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Abstract. Reification is the process of dealing with abstract entities as if they 
have a concrete or material existence. A bitext word alignment is a set of links 
between textual units (phrases or words) which are reciprocal translations. We 
associate to every link of an alignment a complex object, represented by a feature-
value structure containing information about the linked lexical tokens (the translation 
probability, part-of-speech affinity, orthographic similarity etc.). Based on this 
structure, one link of an alignment can be evaluated as correct or not on an individual 
basis. We describe a procedure for word alignment of parallel texts, included into a 
larger platform that ensures the bitext pre- and post-processing (sentence alignment, 
tokenization, POS-tagging, lemmatization, chunking, XML encoding). The alignment 
procedure combines the results produced by two (or more) different word-aligners. 
We describe the base word aligners in some details and their individual evaluations. 
The combined aligner takes the union of the individual alignments as input and, by a 
SVM-based classification engine, filters out the improbable links. The evaluation 
shows that the combined word alignment has a 12.4% improved Alignment Error Rate 
(AER) versus the best individual aligner. 

Key words: word alignment, word alignment combination, word alignment 
reification. 

1. INTRODUCTION 

The alignment process is a fundamental operation in building translation 
models which represent the backbone of any statistical machine translation (SMT) 
system. Therefore, alignment has been, beginning with early 90’s (Brown et al., 
1993), (Kay & Röscheisen, 1993), (Ahrenberg et al., 1998) etc., and continues to 
be a major preoccupation for the SMT community. The great impact of the public 
releases of GIZA (Al-Onaizan et al., 1999), GIZA++ (Och & Ney, 2000), the SMT 
developments kits such MOSES and its recent powerful enhancements (Koehn et 
al., 2007), word alignment shared tracks organized by NAACL2003 (Mihalcea & 
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Pedersen, 2003) or ACL2005 (Martin et al., 2005) and the vast literature in the last 
decade are just a few facts supporting the relevance of the word alignment process 
within a SMT system. Recent developments are characterized by relying more and 
more on linguistic features (lemmas, part-of-speech, parse trees) in their underlying 
methods, new statistical models and training strategies. 

A pair of texts that represent the translation of each other is called a parallel 
text or a bitext. Aligning the different textual units (paragraphs, sentences, phrases 
or words) of a bitext is a process based on the notion of translation equivalence. In 
a given parallel text, the assumption is that the same meaning is linguistically 
expressed in two or more languages. Meaning identity between two or more 
representations of presumably the same thing is a notorious philosophical problem 
and even in more precise contexts than language (for instance, in software 
engineering) it remains a fuzzy concept. Consequently the notion of translation 
equivalence relation, built on the meaning identity assumption, is inherently vague. 
In the area of machine translation, terminology, multilingual information retrieval 
and other related domains, one needs operational notions, defined in precise, 
quantifiable terms. One of the widely accepted interpretations (Melamed, 2001) of 
the translation equivalence defines it as a relation that holds between two fragments 
of different language texts such that expressions appearing in corresponding parts 
of the two texts are reciprocal translations. These expressions are called translation 
equivalents. A bitext with its translation equivalents linked is called an aligned 
bitext. The granularity at which translation equivalents are defined (paragraph, 
sentence, phrasal, lexical) specifies the granularity of a bitext alignment 
(paragraph, sentence, phrasal, lexical). A pair of textual units where the translation 
equivalents are looked for is usually called a translation unit. The granularity of 
translation units can be defined in a similar way to the granularity of translation 
equivalents with the obvious difference that the textual span of a translation unit is 
larger than that of a translation equivalent. In this paper we will address the finest 
granularity level of a bitext alignment, namely the lexical alignment, most 
frequently referred to as word alignment. Most often than not, the translation unit 
for the word alignment is considered to be a pair of corresponding sentences or 
paragraphs from a bitext. The identification of pairs of words <wi

L1 wj
L2> that 

represent mutual translations is the task of a word alignment algorithm. If wi
L1 or 

wj
L2 is NULL, we have a case of null alignment where one word in one part of the 

bitext was not translated in the other part. When wi
L1 , wj

L2 or both appear in several 
translation equivalence pairs in the same translation unit, they correspond to multi-
word expression alignments.  

Many of the modern approaches to lexical alignment rely on statistical 
techniques and they roughly fall into two categories. The hypotheses-testing 
methods such as (Gale & Church, 1991), (Smadja et al., 1996) etc. use a 
hypotheses generator that produces a list of translation equivalence candidates 
(TECs), each of them being subject to an independence statistical test. The TECs 
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that show an association measure higher than expected under the independence 
assumption are assumed to be translation-equivalence pairs (TEPs). The TEPs are 
extracted independently one of another and therefore the process might be 
characterised as a local maximisation (greedy) one. The estimating approaches 
(Brown et al., 1993), (Kupiec, 1993), (Hiemstra, 1997) etc. are based on building 
from data a statistical bitext model, the parameters of which are to be estimated 
according to a given set of assumptions. The bitext model allows for global 
maximisation of the translation equivalence relation, considering not individual 
translation equivalents but sets of translation equivalents (sometimes called 
assignments). There are pros and cons for each type of approach, some of them 
discussed in (Hiemstra, 1997).   

Departing from the usual approach of using GIZA++, we developed two 
quite different word aligners, driven by two distinct objectives: the first one was 
motivated by a project aiming at the development of an interlingually aligned set of 
wordnets while the other one was developed within an SMT ongoing project. The 
first one was used for validating, against a multilingual corpus, the interlingual 
synset equivalences and also for word sense disambiguation (WSD) experiments. 
Although, initially, it was concerned only with open class words recorded in a 
wordnet, turning it into an “all words” aligner was not a difficult task. This word 
aligner, called YAWA, is a typical hypotheses testing implementation and is 
described in section 3.1.  

A quite different solution (closer to the model estimation approach) from the 
one used by YAWA, is implemented in our second word aligner, called MEBA, 
described in section 3.2. It is a multiple parameter and multiple step algorithm 
using relevance thresholds specific to each parameter, but different from each step 
to the other. The implementation of MEBA was strongly influenced by the IBM 
models described in (Brown et al., 1993). We used GIZA++ (Och & Ney, 2000; 
Och & Ney, 2003) to estimate some parameters of the MEBA aligner.  

Both aligners use several features to characterize the links of an alignment. 
The main important link features are described in section 3.2. 

The alignments produced by MEBA were compared to the ones produced by 
YAWA. Given that the two aligners are based on quite different approaches and 
that their F-measures are comparable, it was quite a natural idea to combine their 
results and hope for an improved alignment. Moreover, by analyzing the alignment 
errors done by each word aligner, we found that the number of common mistakes 
was small, so the premises for a successful combination were very good 
(Dietterich, 1998).  

The Combined Word Aligner, COWAL-described in section 4, is a wrapper 
of the two aligners (YAWA and MEBA) merging the individual alignments and 
filtering the result. At the Shared Task on Word Alignment organized by the 
ACL2005 Workshop on “Building and Using Parallel Corpora: Data-driven 
Machine Translation and Beyond” (Martin et al., 2005), we participated (on the 
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Romanian-English track) with the two aligners and the combined one (COWAL). 
Out of 37 competing systems, COWAL was rated the first, MEBA the 20th and 
TREQ-AL, the former version of YAWA, was rated the 21st. This was a very 
convincing demonstration of the usefulness of the alignment combining approach. 

Meanwhile, both the individual aligners and their combination were 
significantly improved. COWAL is more principled based and is now embedded 
into a larger platform (see Figure 1) that incorporates several tools for bitexts  
pre-processing (briefly reviewed in section 2), a graphical interface that allows for 
comparing and editing different alignments, as well as a word sense disambiguation 
module (not discussed here).  
 

 
Figure 1. The alignment editor. 

In the rest of the paper we will describe the present versions of the lexical aligners 
and evaluate their results. The evaluations were performed, using the official 
evaluation script, against the Gold Standards of the ACL2005 shared track (GS2005) 
and also against two recently corrected versions of the GS2005 (see section 4.2). For 
training, we used the data provided by the ACL2005 shared track, (which for 
English-Romanian pair of languages was the same as in NAACL2003 shared track). 
Additionally, we used the Gold Standard alignment from the 2003 competition.  

The training data is a medium-sized English-Romanian corpus, containing 
approximately one million tokens per language. This corpus, compiled by Rada 
Mihalcea (http://www.cs.unt.edu/~rada/wpt/index.html#resources), groups together 
the parallel text of Orwell’s novel “1984”, the Romanian Constitution, and a large 
(about 800,000 tokens) collection of journalistic texts collected from the Web. 
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2. THE BITEXT PROCESSING 

The two base aligners and their combination use the same format for the 
input data and provide the alignments in the same format. The input format is 
obtained from two raw texts that represent reciprocal translations. If not already 
sentence aligned, the two texts are aligned by our SVM sentence aligner (Ceauşu, 
Ştefănescu, Tufiş, 2006). The texts in each language are then tokenized, tagged and 
lemmatized by the TTL module (Ion, 2007).  

Our word alignment algorithms, MEBA and YAWA, described in Section 3, 
require the following preprocessing steps to produce lexical alignments: 

• Text segmentation. The first pre-processing step in most NLP systems 
deals with text segmentation. In our processing chain this step is achieved 
by a modified version of the multilingual tokeniser MtSeg which has 
tokenization resources for many western European languages, developed 
within the MULTEXT project, further enhanced in the follow up 
MULTEXT-EAST project (Dimitrova et al., 1998) with corresponding 
resources for Bulgarian, Czech, Estonian, Hungarian, Romanian and 
Slovene. Our segmenter is a part of the Perl module called TTL (Ion, 2007) 
and is able to recognize paragraphs, sentence and clause boundaries, dates, 
numbers and various fixed phrases, and to split clitics or contractions 
(where the case). We significantly updated the tokenization resources for 
Romanian and English (the languages we have been most interested in lately). 

• POS-tagging. For languages with a productive inflectional morphology the 
morpho-lexical feature-value combinations may be very numerous, leading 
to very large tagsets with unavoidable training data sparseness threats. The 
lack of sufficient quality training data affects the robustness of the 
language models which, consequently, will generate an increased number 
of tagging errors at the run time. To cope with the tagset cardinality 
problem we developed the tiered-tagging methodology (Tufiş, 1999) which 
involves the use of a reduced hidden corpus tagset, automatically 
constructed from the large targeted lexical tagset, and a procedure to map 
back the reduced tagset into the large one, used in the final annotated text. 
The two tagsets (the lexical and corpus tagsets) are related by a 
subsumption relation. When the reduction of the cardinality of the large 
tagset is information lossless (redundancy elimination) the mapping from 
the reduced tagset to the large one is deterministic and it is simply ensured 
by a lookup of a dictionary. For tagset reduction with information loss, 
which ensures a more significant reduction of the lexical tagsets, the 
recovering of the left out morpho-lexical information, although to a large 
extent deterministic, requires an additional preprocessing to solve some 
non-deterministic cases. In the previous version of the tiered tagging 
approach we used several hand-crafted rules (regular expressions defined 
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over the reduced tagset, with a span of ±4 tags around the ambiguously 
mapped tags). Recently, we have re-implemented the tiered tagging 
methodology, by relying on a combination between TTL (an HMM 
tagger), which produces also the lemmatization, and a maximum-entropy 
tagsets converter (Ceauşu, 2006) trained on texts manually tagged with 
both tagsets. The HMM tagger works with the reduced tagset while the 
ME-tagger ensures the mapping of the first tagset onto the large one (the 
lexical tagset) dispensing on the hand-written mapping rules.  

• Lemmatization is in our case (Ion, 2007) a straightforward process, since 
the monolingual lexicons developed within MULTEXT-EAST contain, for 
each word, its lemma and the morpho-lexical tag.  Currently this lexicon 
contains more than 1.3 million entries. Knowing the word-form and its 
associated tag, the lemma extraction is simply a matter of lexicon lookup 
for those words that are in the lexicon. For the unknown words, which are 
not tagged as proper names, a set of lemma candidates is generated by a set 
of suffix-stripping rules induced from the word-form lexicon. A four-gram 
letter Markov model (trained on lemmas in the word-form dictionary) is 
used to choose the most likely lemma. 

• Chunking. By means of a set of language dependent regular expressions 
defined over the tagsets, our chunker accurately recognizes the  (non-
recursive) noun phrases, adjectival/adverbial phrases, prepositional phrases 
and verb complexes (analytical realization of tense, aspect mood and 
diathesis and phrasal verbs) both for Romanian and English (Ion, 2007). 

Finally, the bitext is assembled as an XML document which is the standard input 
for most of our tools, including COWAL alignment platform. All the mentioned 
pre-processing steps have been implemented as web services (Tufiş et al., 2008) 
using the SOAP/WSDL technology and recently have also been published as REST 
services on the WebLicht web-services platform developed within the CLARIN 
project (http://www.clarin.eu/). 

3. THE BASE ALIGNERS 

Although here we will consider only two base aligners as providers of reified 
alignments to be combined, there is no limitation on the number of alignments to 
be combined. 

3.1. YAWA 

YAWA is a three stage lexical aligner that uses bilingual translation lexicons 
and phrase boundaries detection to align words of a given bitext. The translation 
lexicons are generated by a different module (Tufiş, 2002), which produces 
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translation equivalence hypotheses for the pairs of words (one for each language in 
the parallel corpus) which have been observed occurring in aligned sentences more 
than expected by chance. The hypotheses are filtered by a log-likelihood score 
threshold (Dunning, 1993). Several heuristics (string similarity-cognates, POS 
affinities and alignments locality1) are used in a competitive linking manner 
(Melamed, 2001) to extract the most likely translation equivalents. 

YAWA generates a bitext alignment by incrementally adding new links to 
those created at the end of the previous stage. The existing links act as contextual 
restrictors for the newly added links. From one phase to the other new links are 
added without deleting anything. This monotonic process requires a very high 
precision (at the price of a modest recall) for the first step. The next two steps are 
responsible for significantly improving the recall and ensuring an increased F-measure.  

In the rest of this section we present the three stages of YAWA and evaluate 
the contribution of each of them to the final result. 

Phase 1: Content Words Alignment 

YAWA begins the alignment process by taking into account only very 
probable links that represent the skeleton alignment used by the second phase. This 
alignment is done using outside resources such as translation lexicons and involves 
only the alignment of content words (nouns, verbs, adjective and adverbs). 

The translation equivalence pairs are ranked according to an association score 
(i.e. log-likelihood, DICE, point-wise mutual information, etc.). We found that the 
best filtering of the translation equivalents was the one based on the log-likelihood 
(LL) score with a threshold of 9. If TT and TS are target and source tokens, then the 
log-likelihood score is computed according to the formula: 

LL(TT, TS)  =
2 2

1 i 1

2* ij
j

n
= =
∑∑ * ij **

i* *j

n * n
log

n * n
,  

where: 
• n11 = the number of parallel sentence pairs (PSP) in which TS TT co-occur; 
• n12 = the number of PSP in which appeared TS but not TT; 
• n21 = the number of PSP in which the TT appeared but not TS; 
• n22 = the number of PSP in which neither TS nor TT appeared; 
• n1* = the number of PSP in which TS appeared (irrespective of TT); 
• n*1 = the number of PSP in which TT appeared (irrespective of TS); 
• n2* = the number of PSP in which TS did not appeared; 

                                                           
1 The alignments locality heuristics exploits the observation made by several researchers that 

adjacent words of a text in the source language tend to align to adjacent words in the target language. 
A more strict alignment locality constraint requires that all alignment links starting from a chunk in 
the one language end in an aligned chunk of the other language.  
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• n*2 = the number of PSP in which TT did not appeared; 
• n** = the total number of PSP. 

 
Each translation unit (pair of aligned sentences) of the target bitext is scanned for 
establishing the most likely links based on a competitive linking strategy that takes 
into account the LL association scores given by the translation lexicon. If a 
candidate pair of words is not found in the translation lexicon, we compute their 
orthographic similarity (cognate score (Tufiş, 2002)). If this score is above a 
predetermined threshold (for Romanian-English bitexts we used the empirically 
found value of 0.43), the two words are treated as if they existed in the translation 
lexicon with a high association score (in practice we have multiplied the cognate 
score by 100 to yield scores in the range 0 … 100). 

Phase 2: Chunks Alignment 

The second phase requires that each part of the bitext is chunked. Currently, 
the chunking (for both Romanian and English) is driven by regular expressions 
defined over the tagsets used in the target bitext. These simple chunkers recognize 
noun phrases, prepositional phrases, verbal and adjectival or adverbial groupings in 
both languages.  

YAWA produces first chunk-to-chunk matching and then aligns the words 
within the aligned chunks. Chunk alignment is done on the basis of the skeleton 
alignment produced in the first phase. The algorithm is simple: align two chunks 
c(i) in source language and c(j) in the target language if c(i) and c(j) have the same 
type (noun phrase, prepositional phrase, verb phrase, adjectival/adverbial phrase) 
and if there exist a link 〈w(s), w(t)〉 so that w(s) ∈ c(i) then w(t) ∈ c(j). 

After alignment of the chunks, a language pair dependent module takes over 
to align the unaligned words belonging to the chunks. The mild language-pair 
dependency of YAWA is given by the requirement to customise (when necessary) 
a general heuristics which we refer to as Head Linking Projection heuristics (HLP): 

if b is aligned to c and b is preceded by a ,then link a to c (case A in Figure 2)  
unless there exist d in the same chunk with c and the POS category of d has 

a significant affinity with the category of a  (case B in Figure 2).  
The simplicity of these rules derives from the shallow structures of the 

chunks. In the above rule b and c are content words while a is very likely a 
determiner or a modifier for b. In Figure 2 (A and B) the heavy lines are links from 
the skeleton alignment (Phase 1) which by virtue of HLP induce new links 
(represented by the dash lines). This heuristics is sufficiently general to apply for a 
large number of language pairs. 
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A       B 
Figure 2. Head Linking Projection Heuristics: bitexts are represented as vertical texts, side by side  

(a and b belong to the first language; c and d belong to the second language). 

Phase 3: Dealing with Sequences of Unaligned Words 

This phase identifies contiguous sequences of words (blocks) in each part of 
the bitext which remained unlinked and heuristically attempts first to match them 
and them to link their words. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Aligning blocks of unaligned words. 

In Figure 3 we represented by squares the chunks of texts in each side of the bitext 
which contains links created in the previous phases. Via the links they contain, 
these blocks are implicitly aligned (represented by heavy lines). The sequences of 
unlinked words in one part of the bitext are likely to be linked to similar sequences 
of unlinked words in the other part of the bitext.  These sequences of words are 
circled in Figure 3 and the dashed lines represent possible block alignments. The 
major heuristics used in this step is that the sequences of words, external to the 
surrounding aligned segments of texts, could be linked to words belonging to 

a 

b

c a

b d

c

WTm

WTk 
WTk+1 

WSj 
WSj+1 

WSi 
WSi+1 
WSi+2 

1

2
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similar sequences in the other part of the bitext, situated in plausible positions. To 
detect which are the most plausible block alignments, several figures of merit are 
linearly interpolated: the ratio between the numbers of words in each candidate 
sequence, the number of the crossing with the already aligned blocks and the POS-
affinities of the remaining unaligned words.  

For the example in Figure 3, the geometric criterion (minimizing the number 
of crossing) would favour the alignments of the sequence (WSi, WSi+1 WSi+2) to the 
sequence (WTk, WTk+1) and of the sequence (WSj, WSj+1) to the sequence (WTm). These 
alignments marked in Figure 2 as 1 and 2 would not generate crossing links. The 
number of words criterion would favour the same sequence alignment because the 
other sequence alignment might produce a 3-1 alignment which is less probable 
than 2-1 or 1-1 alignment. Finally, the POS affinity between the words the 
candidate sequences contain represents the strongest heuristic criterion, since it is 
used to generate the initial links inside the aligned sequences of unaligned blocks. 
After block alignment, decided by maximization of the linear interpolation of the 
above three criteria, given a pair of aligned blocks, the algorithm links (in a 
competitive linking manner) the words with the same highest POS affinities and 
then the phase 2 is called again with these new links as the skeleton alignment.  

The third phase is responsible for significant improvement of the alignment 
recall, but it also generates several wrong links. The detection of some of them is 
quite straightforward, and we added an additional correction phase 3.f. By 
analysing the bilingual training data we noticed the translators’ tendency to 
preserve the order of the phrasal groups. We used this finding (which might not be 
valid for any language pair) as a removal heuristics for the links that cross two or 
more aligned phrase groups. 

YAWA performance analysis 

Table 1 presents the (cumulative) results of the YAWA aligner at the end of 
each alignment phase. Although the Precision decreases from one phase to the next 
one, the Recall gains are significantly higher, so the F-measure is monotonically 
increasing. The evaluation was performed against the most recent Gold Standard 
(GS3 – see section 4.2). 

Table 1. YAWA evaluation 

 Precision Recall F-Measure AER 

Phase 1 94.08% 34.99% 51.00% 49.00% 
Phase 1+2 89.90% 53.90% 67.40% 32.60% 
Phase 1+2+3 88.82% 73.44% 80.40% 19.60% 
Phase 1+2+3+3.f 88.80% 74.83% 81.22% 18.78% 
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3.2. MEBA 

MEBA uses an iterative algorithm that takes advantage of all pre-processing 
phases mentioned in section 2. Similar to YAWA aligner, MEBA generates the 
links step by step, beginning with the most probable (anchor links). The links to be 
added at any later step are supported or restricted by the links created in the 
previous iterations. The aligner has different weights and different significance 
thresholds on each feature and iteration. Each of the iterations can be configured to 
align different categories of tokens (named entities, dates and numbers, content 
words, functional words, punctuation) in decreasing order of statistical evidence 
and using the aligned pairs from previous steps as support for the new ones. 

MEBA starts with building the so-called “anchoring” links (high confidence): 
tokens with high cognate scores, identical POS, high translation equivalence 
scores, high translation equivalence entropy score (1-normalised entropy), or low 
obliqueness. Then, it incrementally tries to link the words around the already linked 
tokens. The locality with respect to the anchoring links provides strong clues for 
adding new links. The candidate aligned pair that cross too many links already 
established are discouraged. Punctuation linking is addressed in a distinct step and 
the locality scores and the number of crossed links guide it. Finally, as in case of 
YAWA, the Head Feature Projection heuristics is used to link all the remaining 
unlinked words.  

A link between two tokens is characterized by a set of features (with values 
in the [0, 1] interval). We differentiate between context independent features that 
refer only to the tokens of the current link (translation equivalency, part-of-speech 
affinity, cognates, etc.) and context dependent features that refer to the properties 
of the current link with respect to the rest of links in a bitext (locality, number of 
traversed links, tokens’ index displacement and collocation). Also, we distinguish 
between bidirectional features for which the values are computed in both directions 
(translation equivalence, translation equivalence entropy, part-of-speech affinity) 
and non-directional features (cognates, locality, number of traversed links, 
collocation, obliqueness-relative positions of the linked tokens). 

The score of a candidate link (LS) between a source token i and a target token 
j is computed by a linear function of several features scores (Tiedemann, 2003). 

∑
=

=
n

i
ii ScoreFeatjiLS

1
*),( λ ; 1

1
=∑

=

n

i
iλ  

Each feature has defined a specific significance threshold, and if the feature’s value 
is below this threshold, the contribution to the LS of the current link of the feature 
in case is 0. 

The thresholds of the features and lambdas are different from one iteration to 
the next one and they are set by the user during the training and system fine-tuning 
phases. 
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There is also a general threshold for the link scores and only the links that 
have the LS above this threshold are retained in the bitext alignment. Given that 
this condition is not imposing unique source or target indexes, the resulting 
alignment is inherently many-to-many. 

Table 2 summarizes the (cumulative) results after each of the main iterations 
mentioned earlier. The evaluation was performed against the most recent Gold 
Standard (GS3 – see section 4.2). 

Table 2. MEBA evaluation. 

 Precision Recall F-Measure AER 

“anchor” words 98.06% 29.00% 44.76% 55.24% 
words around “anchors” 96.39% 43.53% 59.98% 40.02% 
minimally crossing alignments 95.38% 50.58% 66.36% 33.64% 
punctuation 94.71% 60.08% 73.52% 26.64% 
head linking projection 92.05% 71.00% 80.17% 19.83% 

The features describing a link 

In the following subsections we briefly discuss the main features MEBA uses 
in characterising a link. Some of these features are used by YAWA too (translation 
equivalence scores, cognate, POS affinity, locality and obliqueness). 

Translation equivalence 

This feature (TE) may be used for two types of pre-processed data: 
lemmatized or non-lemmatized input. Depending on the input format, MEBA 
invokes GIZA++ to build translation probability lists for either lemmas or the 
occurrence forms of the bitext2. Irrespective of the lemmatisation option, the 
considered token for the translation model build by GIZA++ is the respective 
lexical item (lemma or word-form) trailed by its POS tag (eg. plane_N, plane_V, 
plane_A). In this way we avoid data sparseness and filter noisy data. For instance, 
in case of highly inflectional languages (as Romanian is) the use of lemmas 
significantly reduces the data sparseness. For languages with weak inflectional 
character (as English is) the POS trailing contributes especially to the filtering the 
search space. A further way of removing the noise created by GIZA++ is to filter 
out all the translation pairs with a log-likelihood (LL) score below a predefined 
threshold. 

As in the case of YAWA, we made various experiments and, based on the 
estimated ratio between the number of false negatives and false positive, 
empirically set the same value of this threshold (9). All the probability losses by 
                                                           

2 Actually, this is a user-set parameter of the MEBA aligner; if the input bitext contains 
lemmatization information, both translation probability tables may be requested. 
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this filtering were redistributed proportionally to the initial probabilities to the 
surviving translation equivalence candidates. 

Translation equivalence entropy score 

The translation equivalence relation is a semantic one and it directly 
addresses the notion of word sense. In a coherent text, the distribution of the senses 
of a word occurring several times is expected to be a skewed one (Zipf, 1936). We 
used this conjecture as a highly informative information source for the validity of a 
candidate link. The translation equivalence entropy score is a favouring parameter 
for the words that have unevenly distributed translation probabilities.  

1

( | )*log ( | )

log( ) 1

N

i i
i

p TR W p TR W

NES W == +
∑

 

where: W is the token for which the entropy score is computed; 
 TRi is one of the possible translations of the token W; 
 N is the number of the possible translations; 
 and p(TRi|W) is the estimated probability of the translation TRi for the 

token W. 

Part-of-speech affinity 

Melamed (1996) observed that more often than not, the translation 
equivalents have the same part-of-speech, that is, most of the time a verb translates 
as a verb, a noun as a noun and so on. He called such translation pairs V-type, to 
distinguish them from those translation pairs where the part of speech of one token in 
not the same as the one for the other token. This type was called P-type translation 
pairs. A word aligner producing only V-type links would presumably have a high 
precision but its recall would seriously be affected. When the translation equivalents 
have different parts of speech, this difference is not arbitrary, but restricted by what 
we called POS-affinity. The POS-affinity probabilities (PA for short) are conditional 
probabilities that can be easily estimated from an already aligned tagged bitext (we 
used the trial data and the GS2003): 
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Source Target
m nSource Target

m n Source Target
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Cognates 

The similarity measure we used, SYM (TS, TT), is very similar to the 
XXDICE score described in (Brew & McKelvie, 1996). If TS is a string of k 
characters α1α2 . . . αk and TT is a string of m characters β1β2 . . . βm then we 
construct two new strings T’S and T’T by inserting where necessary special 
displacement characters into TS and TT. The displacement characters will cause 
both T’S and T’T have the same length p (max (k, m)≤p<k+m) and a maximum 
number of positional matches. Let δ(αi) be the number of displacement characters 
that immediately precede the character αi which matches the character βi and δ(βi) 
be the number of displacement characters that immediately precede the character βi 
which matches the character αi. Let q be the number of matching characters. With 
these notations, the SYM (TS, TT) measure and the COGN feature value are defined 
as follows: 
 
 
 

 
 
 
 
 
 
The threshold for the SYM(TS, TT) was empirically set to 0.42. This value depends 
on the pair of languages in the considered bitext. The actual implementation of the 
SYM function considers a language dependent normalisation step, which strips 
some suffixes, discards the diacritics and reduces some consonant doubling etc. 
This normalisation step was hand written, but, based on available lists of cognates, 
it could be automatically induced. Unlike MEBA which uses the COGN feature, 
YAWA uses SYM score. It is interesting to notice that the COGN feature is relevant 
for most pairs of languages, although for languages with different scripts an 
additional transliteration step would be necessary. 

Obliqueness 

Each token in both sides of a bi-text is characterized by a position index, 
computed as the ratio between the relative position in the sentence and the length 
of the sentence. The absolute value of the difference between tokens’ position 
indexes, subtracted from 13, gives the link’s “obliqueness”. This feature is “context 
free” as opposed to the locality feature described in the next sub-section. 
                                                           

3 This is to ensure (as in the case of the ES score) that values close to 1 are “good” ones and 
those near 0 are “bad”. This definition takes into account the relatively similar word order in English 
and Romanian.  
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( , ) 1
( ) ( )i j

S T

i jOBL SW TW
length Sent length Sent

= − −  

where: SW is the source token; 
 TW is the target token; 
 i is the index of the source token in the source sentence (SentS); 
 and j is the index of the source token in the target sentence (SentT). 

Locality 

Locality is a feature that estimates the degree to which the links are sticking 
together. MEBA has two features to account for locality: (i) weak locality and (ii) 
chunk-based locality. The value of the weak locality feature is derived from the 
already existing alignments in a window of N links centred on the candidate new 
link <Sα Tα>, see Figure 4. 

The window size is variable, proportional to the sentence length. If in the 
window there exist k linked tokens and the relative positions of the tokens in these 
links are <i1 j1>, …<ik jk> then the locality feature of the new link <ik+1, jk+1> is 
defined by the equation below: 
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Figure 4. The “week” locality window. 

If the new link starts from or ends in a token already linked, the index difference 
that would be null in the formula above is set to 1. This way, such candidate links 
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would be given support by the LOC feature. In the case of chunk-based locality the 
window span is given by the indexes of the first and last tokens of the chunk. 

Collocation 

Bi-gram lists (only content words) were built from each monolingual part of 
the training corpus, using the log-likelihood score (threshold of 10) and minimal 
occurrence frequency (3) for candidates filtering. Whenever such bigrams are 
found in either parts of the bitext to be aligned the respective words are 
dependency-linked. Then, the value of the collocation feature is computed similar 
to the dependency-based locality feature. The algorithm searches for the links of 
the lexical dependencies around the candidate link. Monolingual collocation 
feature is an important clue for creating multi-word alignments (one-to many, 
many-to-one and many-to-many). 

4. COMBINING THE REIFIED ALIGNMENTS 

The combination method we used in (Tufiş et al., 2005) was a very simple 
one: the alignment links produced by the base aligners were merged and the 
duplicates eliminated. A few heuristics (e.g. bounded relative positions, see (Tufiş 
et al., 2006)) further eliminated improbable links.  

As mentioned before, COWAL has been rewritten to take advantage of the 
more principled classification techniques (such as SVM) and the methodology 
briefly described (Tufiş et al., 2006). 

From a given alignment one can compute a series of properties for each of its 
links (such as the parameters used by the MEBA aligner). A link becomes this way 
a structured object that can be manipulated in various ways, independent of the 
bitext (or even of the lexical tokens of the link) from which it was extracted. We 
call this procedure alignment reification. The properties of the links of two or more 
alignments are used for our method of alignments combination. 

4.1. The link classifier 

We used an “off-the-shelf” solution for SVM training and classification - 
LIBSVM4 (Fan et al., 2005) with the default parameters (C-SVC classification 
(soft margin) and radial basis kernel function 2( , ) exp(– – )K x y x y= γ . 

We trained the classifier with both positive and negative examples of links. 
The links in the Gold Standard alignment (approx. 7000) were used as positive 
examples set. The negative examples were extracted from the alignments produced 
                                                           

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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by COWAL, YAWA and MEBA where they differed from the Gold Standard2003. 
To obtain a similar number of negative examples as in the positive examples set, we 
automatically generated additional wrong links, by randomly changing one of the 
starting or the ending points of the correct links. The model of the SVM classifier, 
obtained by a 10-fold validation procedure, uses only the features computed by both 
basic aligners: TE(S,T), TE(T,S), OBL(S,T), LOC(S,T), PA(S,T), PA(T,S). 

The alignments produced by YAWA and MEBA for the ACL 2005 test data 
were merged and given as input to the trained SVM classifier. The evaluation has been 
performed against a modified version of the ACL 2005 Gold Standard (see below). 

4.2. Evaluation of the combined alignments 

As mentioned before, at the shared task on English-Romanian word 
alignment organized at ACL 2005 in Ann Arbor, COWAL scored as the best 
aligner. However, after the official Gold Standard 2005 (henceforth referred to as 
GS1) was publicly released we noticed several alignment errors. We corrected only 
the indisputable errors thus obtaining a new Gold Standard, referred to as GS2. 
One step further was to re-tokenize the bitext (in both languages) in order to 
systematically deal with some compounds, various particles (this was relevant 
especially for Romanian: enclitic articles, double negations, clitics and clitics 
doubling, etc.). The initial tokenization of the GS considered as an alignment token 
anything delimited by white spaces. By redoing the tokenization and 
correspondingly updating the links, we got a second version of the Gold Standard, 
GS3. Table 3 displays the evaluation results, using the official evaluation tool, but 
the Gold Standard, GS3, for both the base and combined aligners. As compared to 
the results reported in (Tufiş et al., 2005), the AER figure for COWAL improved 
with more than 6%. 

Table 3. Evaluation of the basic and the combined aligners. 

Aligner Precision Recall F-measure AER 

YAWA(GS3) 88.80% 74.83% 81.22% 18.78% 

MEBA(GS3) 92.15% 73.40% 81.71% 18.29% 

COWAL(GS3) 87.26% 80.94% 83.98% 16.02% 

5. RELATED WORK 

The feature-based word alignment, which we called in (Tufiş et al., 2006) 
reification, also known as discriminative paradigm, emerged mainly after 2005 
when “several independent efforts […] demonstrated that discriminatively trained 
models can equal or surpass the alignment accuracy of the standard models” 
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(Moore et al., 2006). By standard models Moore, as many others, refers to word 
alignments obtained by the revolutionary five IBM generative probabilistic models, 
augmented with the so-called Model 6 (Och & Ney, 2003).  

The research reported in (Lacoste-Julien et al., 2006) uses as features to 
describe an alignment link between two words: the word associations, their 
orthographic similarity, there relative proximity etc. The authors parameterized all 
the scoring functions as weighted linear combinations of feature sets. The 
parameter estimation was addressed by turning the estimation problem into a 
quadratic problem (QAP), the NP-hardness of which was overcome by a linear 
relaxation QAP (see (Taskar, 2004) for details). Evaluating their approach on the 
French-English Hansard test data from the NAACL word alignment shared task, 
they obtained an extremely low AER score of 3.8%. 

In (Moore et al., 2006) the authors describe a two stage discriminative aligner 
using various features of the words in a linked pair: the words association score (a 
LL ratio score), the degree of non-monotonicity of the alignments (similar to our 
OBL feature), the number of backward jumps, association score rank, exact match 
(similar to COGN=1 feature) etc. They also use weighted linear combinations of 
feature sets. For training, they report on experiments using a perceptron model and 
an SVM model, with the latter obtaining an AER score of 4.7% on aligning the 
French-English Hansard test data from the NAACL word alignment shared task. 

Although not using reification, the method described by (Liang et al., 2006) 
brings evidence that what they called alignment by agreement, where they optimize 
the agreement between the bidirectional alignments not only in the prediction stage 
but also during the training phase, gets better results than the standard practice of 
intersecting predictions of independently trained unidirectional models. On the 
same test data as the previous mentioned works they obtained an AER score of 5.2%. 

Several researchers raised the issue on relevance of the AER score with 
respect to the quality of alignment and its impact on the quality of translation 
(Fraser & Marcu, 2007). Indeed the way AER was defined (Och and Ney, 2003) 
makes very hard to compare alignments against Gold Standards that used only 
S(ure) links versus Gold standards that used both S(ure) and P(ossible) links. This 
is because an alignment evaluated against a Gold Standard that has both S and P 
links would always obtain an AER better than the same alignment evaluated against 
a Gold Standard using only S links. This was the case of the English-French Gold 
Standard (S and P links) and the English-Romanian Gold Standard (only S links) 
used in the Word Alignment competition at ACL 2005. The best results for the two 
language pairs were significantly distant. Another issue that one has to consider 
when comparing the AER scores for two different aligners is the register and the 
size of the training data. HANSARD corpus is one of the largest parallel (English – 
French) training data and the language is somehow formulaic (parliamentary 
debates). At the NAACL 2003 Word Alignment competition the English – French 
training data, a subset of the HANSARD corpus, contained 500,000 parallel 
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sentences. The training corpus used for the English – Romanian shared track in the 
same competition contained only 45,241 parallel sentences while the language was 
much freer (journalistic register). In the previously mentioned paper, Fraser and 
Marcu claim that the impact of AER score improvement is unclear and they argue 
in favour of a new metric, based on a correlation coefficient (squared Pearson 
product-moment coefficient). However, in (Haghighi et al., 2009, Table 3) the 
authors bring clear evidence of correlation between improvement of the alignment 
and the increased quality of the translation. 

6. CONCLUSIONS AND FURTHER WORK 

Neither YAWA nor MEBA needs an a priori bilingual dictionary, as this will 
be automatically extracted by either TREQ-AL or GIZA++. We made evaluation of 
the individual alignments in both experimental settings: without a start-up bilingual 
lexicon and with an initial mid-sized bilingual lexicon. Surprisingly enough, we 
found that while the performance of YAWA increases a little bit (approx. 1% 
increase of the F-measure), MEBA is doing better without an additional lexicon. 
Therefore, in the evaluation presented in section 4, MEBA uses only the training 
data vocabulary. 

YAWA is very sensitive to the quality of the bilingual lexicons it uses. We 
used automatically extracted translation lexicons (with or without a seed lexicon), 
and the noise inherently present might have had a bad influence on YAWA’s 
precision. Replacing the automated generated bilingual lexicons with validated 
(reference) bilingual lexicons) would further improve the overall performance of 
this aligner. Yet, this might be a harder to meet condition for some pairs of 
languages than using parallel corpora. A new version of YAWA, incorporating 
dependency linking information, is almost finished and its individual or embedded 
into COWAL evaluation will be reported in a future paper. 

MEBA is more versatile and it is not as sensitive as YAWA to the quality of 
the translation lexicons but, on the other hand, it is very sensitive to the values of 
the parameters that control its behaviour. Currently they are set according to the 
developers’ intuition and after the analysis of the results from several trials. Since 
this activity is pretty time consuming, we plan to extend MEBA with a supervised 
learning module, which would automatically determine the “optimal” parameters 
(thresholds and weights) values. 
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