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Mārcis Pinnis and Kārlis Goba
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Abstract. In this work we describe a statistical morphological tagger for Lat-
vian, Lithuanian and Estonian languages based on morphological tag disambigua-
tion. These languages have rich tagsets and very high rates of morphological
ambiguity. We model distribution of possible tags with an exponential proba-
bilistic model, which allows to select and use features from surrounding context.
Results show significant improvement in error rates over the baseline, the same
as the results for Czech. In comparison with the simplified parameter estimation
method applied for Czech, we show that maximum entropy weight estimation
achieves considerably better results.

Keywords: Tagger, maximum entropy, inflective languages, Estonian, Latvian,
Lithuanian.

1 Introduction

The scope of this work covers three languages—Estonian, Latvian and Lithuanian, all
of which have rich nominal and verbal morphology. While inflections in Estonian are
formed agglutinatively, Latvian and Lithuanian share similar fusional morphology. All
three languages exhibit high ambiguity of possible morphological analyses of a word,
which in the case of Latvian and Lithuanian can be explained by their fusional na-
ture, with several inflections sharing the same morphemes. In Estonian some agglutina-
tive morphemes are shared between several inflections, producing homonymous surface
forms.

1.1 Morphological Tagging

Morphological tagging can be viewed as a classification problem for a given word se-
quence (typically sentence), where each word is assigned a single tag describing its
morphological properties. In this work, all three languages are processed within the
same framework. Morphological analysis of a word (or in general, token) is encoded in
a single tag consisting of fixed number of subtags corresponding to certain morpholog-
ical categories (e.g., part of speech, gender, number, etc.).

Like in similar work for Czech [2], we take a two-step approach to tagging, where
a token is first analyzed for possible morphological tags and disambiguated separately.
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POS adjective
GENDER male

NUMBER plural
CASE nominative
DEGREE positive

DEFINITENESS indefinite

Fig. 1. Example of a morphological tag ���	
	�
������������������
� for the Latvian word
pašsaprotami (lit. self-evident)

The morphological analyzer is based on a lemma lexicon and inflectional rules, and
produces one or several analyses for a given word. The tagger then disambiguates the
analysis by estimating probabilities of individual analyses and selecting the most prob-
able.

In this work, we used an unified morphological analyzer consisting of a rule-based
analysis module for Latvian and Lithuanian (developed by Tilde), and a separate anal-
ysis module for Estonian [6] (developed by Filosoft).

1.2 Morphological Tagset

The notion of tagset includes the set of valid combinations of subtags. Some subtags
are mutually independent (e.g. a noun can decline in number and case independently),
while others are valid only in certain contexts (e.g. tense is only valid for verbs).

The morphological tagset used for all three languages is similar to MULTEXT-East
format [7] and consists of 28 categories. Each category is represented as a single-
character subtag (see figure 1 for an example tag), with ‘0’ corresponding to no value.
While each language uses its own subset of all categories and their values, the category
positions within the morphological tag and their meanings remain fixed.

2 Training Data

The training data (see figure 2 for a sample) for the morphological tagger consists of
multiple lines; where each line represents a token and a sequence of possible tags. Sen-
tences are separated with an empty line. The sequence of tags is given by the morpho-
logical analyzer of the particular language. The first tag is always the correct (manually
annotated) tag. If the morphological analyzer does not recognize a token, it returns an
empty tag. We assume that the morphological analyzer has recognized all tokens, thus
the morphological tagger does not process unknown words and the tagging task is re-
duced to a morphological disambiguation task for known tokens.

We use morphologically disambiguated corpora for each of the three languages (Es-
tonian, Latvian and Lithuanian) to train and test the morphological tagger.

Internal corpora were used for Latvian and Lithuanian, which consist of fiction,
newspaper articles, scientific papers, business reports and letters, government docu-
ments, legal documents, student essays and theses, IT documents (such as manuals
and web site information) and forum comments. Latvian and Lithuanian corpora were
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Fig. 2. Latvian training data excerpt (lit. all was at end)

pre-tagged using a morphological analyzer and then given to annotators for manual dis-
ambiguation. Due to budget limitations, each token has been disambiguated only by
one annotator, which lowers the corpus quality and creates unnecessary noise in the
corpora.

For the Estonian tagger a freely available morphologically disambiguated corpus [9]
was used, which consists of fiction, legal, newspaper and scientific texts. In this corpus,
each word has been annotated by two annotators and disagreements have been resolved
by a third annotator, thereby increasing the corpus quality. The Estonian corpus tagset
is different to our unified tagset, therefore it had to be converted to the Multext-East
tagset using a one-to-one transformation and a transformation from Multext-East to our
unified tagset with some minor transformations to adjust the corpus to our unified mor-
phological analyzer. In order to create the training data for the morphological tagger,
the ambiguous tag sequence had to be created, therefore, the corpus was preprocessed
also with our morphological analyzer.

After disambiguation, the corpora were split into training and test data so that none
of the test sentences would be present in the training data. The final corpora statistics is
shown in table 1.

Table 1. Training and test corpora

Estonian Latvian Lithuanian

Total tokens 419,137 117,362 71,460
Sentences 31,266 6,564 4,201
Ambiguous words, % 32.4% 48.5% 36.0%
Word OOV rate 1.5% 3.0% 2.3%

Distinct tags 268 1401 1052
Tag perplexity 48.86 184.46 125.60

Test data, % 6% 10% 10%
Test tokens 26,366 12,826 8,103

2.1 Ambiguity Classes

Following the work for Czech [2], we use the notion of ambiguity class to describe pos-
sible morphological ambiguities within a subtag. For example, ambiguity class POSan

describes part of speech ambiguity between noun and adjective.
There are in total 216, 250 and 259 ambiguity classes throughout 22, 20 and 14

ambiguous morphological categories in the Latvian, Lithuanian and Estonian language
training corpus respectively.
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3 Model

The tagging model is based on the exponential probabilistic model used for Czech [2].
We assume that individual subtags {yPOS,yTENSE,yGENDER, . . .} are independent, and
model the probability of a candidate tag as a product of individual subtag probabilities:

p(y) = ∏
c∈CAT

p(yc) . (1)

The subtag probabilities are modeled separately within each ambiguity class AC.
The probability of an event y in context x is modeled as an exponentially weighted sum
of feature functions [1]:

pΛ (y|x) =
exp∑i λi fi(y,x)

Z(x)
, (2)

where f (y,x) are binary valued feature functions predicting event y in context x, and
Z(x) is the normalization factor. Here, events correspond to subtag values in a corre-
sponding morphological category, and features describe the surrounding context of a
word in a sentence.

4 Training

4.1 Feature Selection

The training of the morphological tagger heavily relies on the feature set used in the
training and tagging process as can be seen in the results section. We use binary feature
functions, which consist of a context address, function type (for instance, simple types,
such as, part of speech, gender, number, also the token itself, or complex types, such
as gender, number and case equality with the token whose category is being predicted)
and the value of the function type (for example, ‘a’ for part of speech or ‘kas’ for a
token in Latvian). We use the value ‘�� ’ to define equality of the function type of the
token in the address defined by the function and the function type of the token whose
category is being predicted. The first line of the feature excerpt in figure 3, therefore,
is read in the following way: if the next token is either a conjunction or a comma, the
gender, number and case of the second token to the right have to agree with the gender,
number and case of the predicted token.

Our morphological tagger uses different feature sets for each of the ambiguity classes
in the training corpus. Therefore, a feature selection algorithm was used in order to

#$ %�
���&'����$��� ((

#$ )*+ �

# )*+ �

, )*+ 	

Fig. 3. First four feature excerpt for the Latvian part-of-speech ambiguity class ‘qsv’
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select the best features that describe each of the ambiguity classes. But before the se-
lection algorithm was applied, the initial feature set was generated using all possible
categories, events, context position indicators (up to three tokens to the left and right)
and some trigger words (conjunctions, prepositions, particles and adverbs) extracted
from the training corpus. Although the trigger words increased the precision, the in-
crease was very insignificant (in the order of 10−2 of a percent). This might be due to
the fact that the part-of-speech feature functions already express the characteristics of
the trigger words and, thus, the increase is very low. The feature generation resulted in
10017, 3801 and 3045 initial features for Estonian, Latvian and Lithuanian respectively.

When the initial feature set was created, a simple feature selection algorithm based
on the maximal mutual information was used to select the set of feature functions with
the highest score for each ambiguity class. The maximal mutual information of a feature
function in an ambiguity class is

I(X ;Y ) = ∑
y∈Y

∑
x∈X

p(x,y) log
p(x,y)

p(x)p(y)
, (3)

where X = {0,1} corresponds to the binary value of feature function, Y is the set of
possible events in the ambiguity class being processed (for instance, {‘a’, ‘n’} for the
ambiguity class ‘an’), p(x) is the probability of the feature function to receive the value
x in the context of the ambiguity class, p(y) is the probability of the event y in the
ambiguity class and p(x,y) is the probability of the feature function receiving the value
x and the event simultaneously being y in the ambiguity class.

All probabilities are computed as normalized frequency distributions. Out of all ini-
tial feature functions a total of 1684, 775 and 742 feature functions were selected as
important by the feature selection algorithm throughout all ambiguity classes for Esto-
nian, Latvian and Lithuanian respectively for the best exponential models (applying a
maximum of 150 feature functions in an ambiguity class for Estonian, 100 for Latvian
and 50 for Lithuanian).

4.2 Model Parameters

We use a maximum entropy library developed at the Tsujii Laboratory of The Univer-
sity of Tokyo [8] to train the models of each of the ambiguity classes. The maximum
entropy library features the LMVM (Limited Memory Variable Metric) parameter es-
timation [5], where parameter re-estimation, in comparison with iterative scaling algo-
rithms, such as IIS (Improved Iterative Scaling) (for instance, in our tests IIS performed
up to 30 times slower on the Latvian corpus using 150 features), converges significantly
faster [4]. The estimated weights together with the feature sets of all ambiguity classes
are combined in a single tagging model, which is used in the tagging process.

When disambiguating a token, we use the exponential model (1) to predict all events
y in the context x for each ambiguity class of a token. Then we combine the probabilities
of separate event predictions using a slightly modified version of the formula (1) for
each possible tag [2]:

p(y|x) = ∏
c∈CAT

(1−α)pACc(yc|x)+ α pACc(yc) , (4)
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where we use linear interpolation of the model probability and the probability of the
event y in the ambiguity class AC (which, in fact, is the frequency distribution of the
event y in the ambiguity class AC) as a smoothing method. The α weights were man-
ually estimated based on the highest training corpus precision. The usage of linear
smoothing with the frequency distribution of an event in an ambiguity class has proven
to increase the overall precision by 0.2–0.3%.

5 Results

We compare the error rates of the exponential model trained on Estonian, Latvian and
Lithuanian data (table 2) with HunPos, a HMM trigram tagger [3]. We trained the ex-
ponential model with Maximum Entropy parameter estimation and the simplified pa-
rameter estimation described in [2]. The baseline error rate is computed using only the
category label statistics (with α = 1). HunPos tagger was run in guided mode, with
possible morphological tags provided for each token.

We trained and evaluated the exponential maximum entropy models on various num-
bers of selected features (using the maximal mutual information feature selection
method) and the best test results were achieved using 150, 100 and 50 features for
Estonian, Latvian and Lithuanian respectively.

Table 2. Error rates

Experiment Estonian Latvian Lithuanian

Baseline 9.72 14.00 7.47
HunPos 8.51 6.67 14.55
Exponential; simplified estimation 6.98 12.76 6.82
Exponential; ME estimation 4.04 8.49 5.65

Exponential; training data 3.07 5.32 3.76

Feature functions 150 100 50

Based on the best exponential maximum entropy models, we also evaluated the in-
dividual subtag error rates over all test tokens (table 3). The results suggest that for all
languages the error rate distribution is fairly similar (with an exception of Estonian,
in which gender is not used), more precisely, the categories with the most misclassifi-
cations are: part of speech, gender, number and case; case being the most difficult to
predict.

5.1 Error Analysis

We have performed error analysis on the Estonian, Latvian and Lithuanian exponential
models with 150, 100 and 50 feature functions respectively. For better interpretation
of tagging errors, we grouped the errors by differences between the correct and the
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Table 3. Error rates within categories

Category Estonian Latvian Lithuanian

POS 2.11 1.91 2.33
GENDER — 2.67 2.06
NUMBER 1.31 3.34 2.23
CASE 2.15 4.53 2.64
PERSON 0.29 0.37 0.37
TENSE 0.58 0.82 0.88
MODE 0.31 0.48 0.67
VOICE 0.60 0.51 0.63
REFLEX — 0.05 0.09
NEGATIVE 0.30 0.00 0.05
DEGREE 0.50 0.80 1.01
DEFINITENESS — 0.68 0.96
DIMINUTIVE — 0.40 0.05
PREPNUMBER — 0.60 —
PREPCASE 0.30 0.63 0.12
PREPTYPE 0.30 0.16 0.07
NUMTYPE 0.24 0.02 0.06
PRONCLASS — 0.22 0.57
PARTTYPE 0.02 0.06 0.08
VERBTYPE — 0.43 0.15
ADVTYPE — 0.03 —
CONJTYPE 0.27 0.58 0.88

predicted tags. The cumulative error rates of the most common error types for each
language (table 4) show that the top six errors cover approximately 50% of all errors in
each language training corpus.

The error type, for instance, ‘n → g (case)’ given in table 4 explains that instead
of the case n (nominative) the case g (genitive) was selected as being more probable.
Other error types in the table include number (s - singular, p plural), case (p - partitive,
a - accusative) and part of speech (a - adjective, c - conjunction, n - noun, q - particle,
r - adverb).

When analyzing the top six errors of the Latvian morphological tagger, it can be
seen that the errors are fairly regular, for instance, for the error type ‘m → f (gender)’
(as well as for the opposite) a common misclassification is done for the pronoun ‘to’,
which is obvious as the gender can either be distinguished by the sentence context (for
instance, in noun phrases), by an anaphora resolution or cannot be distinguished at all
in the case when the context is too small. As the feature functions do not consider
anaphora resolution for pronouns of this type and the context may not reveal the correct
gender, the statistical morphological tagger makes misclassifications. Another common
misclassification occurs in noun phrases where adjuncts are used, for instance, con-
sider the error type ‘sa → pg (number & case)’. The adjunct number and case in most
cases, when observing the context to the right, can be identified, but the tagger makes a
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Table 4. Top six error types

Language Correct → Wrong (Category) Error Coverage

Estonian

n → g (case) 13.22
g → n (case) 24.85
p → s (number) 32.25
s → p (number) 39.36
p → g (case) 45.01
r → c (part of speech) 49.52

Latvian

pg → sa (number & case) 14.53
m → f (gender) 26.31
f → m (gender) 33.68
sa → pg (number & case) 39.83
pn → sg (number & case) 45.96
a → n (case) 50.86

Lithuanian

pn → sg (number & case) 14.89
f → m (gender) 28.16
m → f (gender) 34.12
q → c (part of speech) 39.08
sg → pn (number & case) 44.01
a → n (part of speech) 48.53

misclassification. This suggests that for specific ambiguity classes, either wrong feature
functions have been prioritized or more complex feature functions would have to be
generated, that address the issue of misclassification.

6 Conclusions

The results of the application of maximum entropy modeling to Estonian, Latvian and
Lithuanian confirms the suitability of this method for morphologically rich languages
and corresponds well to the results for Czech [2]. The exponential tagger performs
significantly better than the baseline and in two cases significantly better than HMM
tagger. In the case of Latvian, we have observed an interesting deviation in favor of
HMM tagger. Also the high tagset perplexity for Latvian indicates that careful investi-
gation of training data quality is necessary.

The feature selection algorithm used in our training and evaluation experiments does
not consider interfeature relations, which lowers the final tagging precision because
features, which in combination perform well, may not be selected and features, which
in combination perform poorly, on the contrary, may be selected. Therefore, a better
feature selection algorithm would be the use of iterative feature selection as explained
by [2]. As we use the maximum entropy training method, the iterative feature selection
would require large computing resources. An interesting experiment would be to run
the iterative feature selection based on the simplified weight estimation algorithm and
compare the results to the model acquired by maximum entropy training on the features
selected by the iterative feature selection.



22 M. Pinnis and K. Goba

The tagger model could be extended to handle unknown words, allowing to avoid
the shortcomings of the lexicon-based analyzer. In this case, the ambiguity class is un-
known, and the model needs to be adjusted. One possibility would be to combine subtag
classifiers trained on whole data (as opposed to conditioned by ambiguity class). In this
case, some model of valid subtag combinations should be used to avoid predicting in-
valid tags.

The combination of subtag models currently treats all subtags equally. This com-
bination could be parameterized by weighing the individual subtag probabilities in a
log-linear fashion, effectively treating subtag probabilities as feature values. This ap-
proach would allow the parameters to be tuned and allow minimum error rate training.
Also, more features (like subtag classifiers over all training data) could be added.
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