
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 262–272,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Storing the Web in Memory: Space Efficient Language Models with
Constant Time Retrieval

David Guthrie
Computer Science Department

University of Sheffield
D.Guthrie@dcs.shef.ac.uk

Mark Hepple
Computer Science Department

University of Sheffield
M.Hepple@dcs.shef.ac.uk

Abstract

We present three novel methods of compactly
storing very large n-gram language models.
These methods use substantially less space
than all known approaches and allow n-gram
probabilities or counts to be retrieved in con-
stant time, at speeds comparable to modern
language modeling toolkits. Our basic ap-
proach generates an explicit minimal perfect
hash function, that maps all n-grams in a
model to distinct integers to enable storage of
associated values. Extensions of this approach
exploit distributional characteristics of n-gram
data to reduce storage costs, including variable
length coding of values and the use of tiered
structures that partition the data for more effi-
cient storage. We apply our approach to stor-
ing the full Google Web1T n-gram set and all
1-to-5 grams of the Gigaword newswire cor-
pus. For the 1.5 billion n-grams of Gigaword,
for example, we can store full count informa-
tion at a cost of 1.66 bytes per n-gram (around
30% of the cost when using the current state-
of-the-art approach), or quantized counts for
1.41 bytes per n-gram. For applications that
are tolerant of a certain class of relatively in-
nocuous errors (where unseen n-grams may
be accepted as rare n-grams), we can reduce
the latter cost to below 1 byte per n-gram.

1 Introduction

The availability of very large text collections, such
as the Gigaword corpus of newswire (Graff, 2003),
and the Google Web1T 1-5gram corpus (Brants and
Franz, 2006), have made it possible to build mod-
els incorporating counts of billions of n-grams. The
storage of these language models, however, presents

serious problems, given both their size and the need
to provide rapid access. A prevalent approach for
language model storage is the use of compact trie
structures, but these structures do not scale well and
require space proportional to both to the number
of n-grams and the vocabulary size. Recent ad-
vances (Talbot and Brants, 2008; Talbot and Os-
borne, 2007b) involve the development of Bloom fil-
ter based models, which allow a considerable reduc-
tion in the space required to store a model, at the cost
of allowing some limited extent of false positives
when the model is queried with previously unseen
n-grams. The aim is to achieve sufficiently compact
representation that even very large language models
can be stored totally within memory, avoiding the
latencies of disk access. These Bloom filter based
models exploit the idea that it is not actually neces-
sary to store the n-grams of the model, as long as,
when queried with an n-gram, the model returns the
correct count or probability for it. These techniques
allow the storage of language models that no longer
depend on the size of the vocabulary, but only on the
number of n-grams.

In this paper we give three different models for
the efficient storage of language models. The first
structure makes use of an explicit perfect hash func-
tion that is minimal in that it maps n keys to in-
tegers in the range 1 to n. We show that by us-
ing a minimal perfect hash function and exploit-
ing the distributional characteristics of the data we
produce n-gram models that use less space than all
know approaches with no reduction in speed. Our
two further models achieve even more compact stor-
age while maintaining constant time access by us-
ing variable length coding to compress the n-grams
values and by using tiered hash structures to parti-

262

tion the data into subsets requiring different amounts
of storage. This combination of techniques allows
us, for example, to represent the full count informa-
tion of the Google Web1T corpus (Brants and Franz,
2006) (where count values range up to 95 billion) at
a cost of just 2.47 bytes per n-gram (assuming 8-
bit fingerprints, to exclude false positives) and just
1.41 bytes per n-gram if we use 8-bit quantization
of counts. These costs are 36% and 57% respec-
tively of the space required by the Bloomier Filter
approach of Talbot and Brants (2008). For the Gi-
gaword dataset, we can store full count information
at a cost of only 1.66 bytes per n-gram. We re-
port empirical results showing that our approach al-
lows a look-up rate which is comparable to existing
modern language modeling toolkits, and much faster
than a competitor approach for space-efficient stor-
age. Finally, we propose the use of variable length
fingerprinting for use in contexts which can tolerate
a higher rate of ‘less damaging’ errors. This move
allows, for example, the cost of storing a quantized
model to be reduced to 1 byte per n-gram or less.

2 Related Work

A range of lossy methods have been proposed, to
reduce the storage requirements of LMs by discard-
ing information. Methods include the use of entropy
pruning techniques (Stolcke, 1998) or clustering (Je-
linek et al., 1990; Goodman and Gao, 2000) to re-
duce the number of n-grams that must be stored.
A key method is quantization (Whittaker and Raj,
2001), which reduces the value information stored
with n-grams to a limited set of discrete alternatives.
It works by grouping together the values (probabil-
ities or counts) associated with n-grams into clus-
ters, and replacing the value to be stored for each
n-gram with a code identifying its value’s cluster.
For a scheme with n clusters, codes require log2n
bits. A common case is 8-bit quantization, allow-
ing up to 256 distinct ‘quantum’ values. Differ-
ent methods of dividing the range of values into
clusters have been used, e.g. Whittaker and Raj
(2001) used the Lloyd-Max algorithm, whilst Fed-
erico and Bertoldi (2006) use the simpler Binning
method to quantize probabilities, and show that the
LMs so produced out-perform those produced us-
ing the Lloyd-Max method on a phrase-based ma-

chine translation task. Binning partitions the range
of values into regions that are uniformly populated,
i.e. producing clusters that contain the same num-
ber of unique values. Functionality to perform uni-
form quantization of this kind is provided as part of
various LM toolkits, such as IRSTLM. Some of the
empirical storage results reported later in the paper
relate to LMs recording n-gram count values which
have been quantized using this uniform binning ap-
proach. In the rest of this section, we turn to look
at some of the approaches used for storing language
models, irrespective of whether lossy methods are
first applied to reduce the size of the model.

2.1 Language model storage using Trie
structures

A widely used approach for storing language mod-
els employs the trie data structure (Fredkin, 1960),
which compactly represents sequences in the form
of a prefix tree, where each step down from the
root of the tree adds a new element to the sequence
represented by the nodes seen so far. Where two
sequences share a prefix, that common prefix is
jointly represented by a single node within the trie.
For language modeling purposes, the steps through
the trie correspond to words of the vocabulary, al-
though these are in practice usually represented by
24 or 32 bit integers (that have been uniquely as-
signed to each word). Nodes in the trie correspond-
ing to complete n-grams can store other informa-
tion, e.g. a probability or count value. Most mod-
ern language modeling toolkits employ some ver-
sion of a trie structure for storage, including SRILM
(Stolcke, 2002), CMU toolkit (Clarkson and Rosen-
feld, 1997), MITLM (Hsu and Glass, 2008), and
IRSTLM (Federico and Cettolo, 2007) and imple-
mentations exist which are very compact (Germann
et al., 2009). An advantage of this structure is that it
allows the stored n-grams to be enumerated. How-
ever, although this approach achieves a compact of
representation of sequences, its memory costs are
still such that very large language models require
very large storage space, far more than the Bloom
filter based methods described shortly, and far more
than might be held in memory as a basis for more
rapid access. The memory costs of such models
have been addressed using compression methods,
see Harb et al. (2009), but such extensions of the

263

approach present further obstacles to rapid access.

2.2 Bloom Filter Based Language Models

Recent randomized language models (Talbot and
Osborne, 2007b; Talbot and Osborne, 2007a; Tal-
bot and Brants, 2008; Talbot and Talbot, 2008; Tal-
bot, 2009) make use of Bloom filter like structures
to map n-grams to their associated probabilities or
counts. These methods store language models in
relatively little space by not actually keeping the n-
gram key in the structure and by allowing a small
probability of returning a false positive, i.e. so that
for an n-gram that is not in the model, there is a
small risk that the model will return some random
probability instead of correctly reporting that the n-
gram was not found. These structures do not allow
enumeration over the n-grams in the model, but for
many applications this is not a requirement and their
space advantages make them extremely attractive.
Two major approaches have been used for storing
language models: Bloom Filters and Bloomier Fil-
ters. We give an overview of both in what follows.

2.2.1 Bloom Filters
A Bloom filter (Bloom, 1970) is a compact data

structure for membership queries, i.e. queries of the
form “Is this key in the Set?”. This is a weaker struc-
ture than a dictionary or hash table which also asso-
ciates a value with a key. Bloom filters use well be-
low the information theoretic lower bound of space
required to actually store the keys and can answer
queries in O(1) time. Bloom filters achieve this feat
by allowing a small probability of returning a false
positive. A Bloom filter stores a set S of n elements
in a bit array B of size m. Initially B is set to con-
tain all zeros. To store an item x from S in B we
compute k random independent hash functions on
x that each return a value in the range [0 . .m− 1].
These values serve as indices to the bit array B and
the bits at those positions are set to 1. We do this
for all elements in S, storing to the same bit array.
Elements may hash to an index inB that has already
been set to 1 and in this case we can think of these
elements as “sharing” this bit. To test whether set S
contains a key w, we run our k hash functions on w
and check if all those locations in B are set to 1. If
w ∈ S then the bloom filter will always declare that
w belongs to S, but if x /∈ S then the filter can only

say with high probability that w is not in S. This er-
ror rate depends on the number of k hash functions
and the ratio of m/n. For instance with k = 3 hash
functions and a bit array of size m = 20n, we can
expect to get a false positive rate of 0.0027.

Talbot and Osborne (2007b) and Talbot and Os-
borne (2007a) adapt Bloom filters to the requirement
of storing values for n-grams by concatenating the
key (n-gram) and value to form a single item that is
inserted into the filter. Given a quantization scheme
allowing values in the range [1 . . V], a quantized
value v is stored by inserting into the filter all pair-
ings of the n-gram with values from 1 up to v. To re-
trieve the value for a given key, we serially probe the
filter for pairings of the key with each value from 1
upwards, until the filter returns false. The last value
found paired with the key in the filter is the value re-
turned. Talbot and Osborne use a simple logarithmic
quantization of counts that produce limited quan-
tized value ranges, where most items will have val-
ues that are low in the range, so that the serial look-
up process will require quite a low number of steps
on average. For alternative quantization schemes
that involve greater value ranges (e.g. the 256 values
of a uniform 8-bit scheme) and/or distribute n-grams
more evenly across the quantized values, the average
number of look-up steps required will be higher and
hence the speed of access per n-gram accordingly
lower. In that case also, the requirement of insert-
ing n-grams more than once in the filter (i.e. with
values from 1 up to the actual value v being stored)
could substantially reduce the space efficiency of the
method, especially if low false positive rates are re-
quired, e.g. the case k = 3,m = 20n produces a
false positive rate of 0.0027, as noted above, but in a
situation where 3 key-value items were being stored
per n-gram on average, this error rate would in fact
require a storage cost of 60 bits per original n-gram.

2.2.2 Bloomier Filters
More recently, Talbot and Brants (2008) have pro-

posed an approach to storing large language mod-
els which is based on the Bloomier Filter technique
of Chazelle et al. (2004). Bloomier Filters gener-
alize the Bloom Filter to allow values for keys to
be stored in the filter. To test whether a given key
is present in a populated Bloomier filter, we apply
k hash functions to the key and use the results as

264

indices for retrieving the data stored at k locations
within the filter, similarly to look-up in a Bloom fil-
ter. In this case, however, the data retrieved from the
filter consists of k bit vectors, which are combined
with a fingerprint of the key, using bitwise XOR, to
return the stored value. The risk of false positives
is managed by making incorporating a fingerprint of
the n-gram, and by making bit vectors longer than
the minimum length required to store values. These
additional error bits have a fairly predictable impact
on error rates, i.e. with e error bits, we anticipate the
probability of falsely construing an unseen n-gram
as being stored in the filter to be 2−e. The algo-
rithm required to correctly populate the Bloomier fil-
ter with stored data is complicated, and we shall not
consider its details here. Nevertheless, when using v
bits to represent values and e bits for error detection,
this approach allows a language model to be stored
at a cost of is 1.23 · (v + e) bits per n-gram.

3 Single Minimal Perfect Hash Ranking
Approach

We first describe our basic structure we call Single
Minimal Perfect Hash Rank (S-MPHR) that is more
compact than that of Talbot and Brants (2008) while
still keeping a constant look up time. In the next
two sections we describe variations on this model to
further reduce the space required while maintaining
a constant look up time. The S-MPHR structure can
be divided into 3 parts as shown in Figure 1: Stage
1 is a minimal perfect hash function; Stage 2 is a
fingerprint and rank array; and Stage 3 is a unique
value array. We discuss each stage in turn.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

Array of K distinct probability values / frequency counts

p1 p2 p3 p4 p5 p6 ... pK

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

Figure 1: The Single MPHR structure

3.1 Minimal Perfect Hash Function
The first part of the structure is a minimal perfect
hash function that maps every n-gram in the training
data to a distinct integer in the range 0 to N − 1,
whereN is the total number of n-grams to store. We
use these integers as indices into the array of Stage
2 of our structure.

We use the Hash, displace, and compress (CHD)
(Belazzougui et al., 2009) algorithm to generate a
minimal perfect hash function that requires 2.07 bits
per key and has O(1) access. The algorithm works
as follows. Given a set S that contains N = |S|
keys (in our case n-grams) that we wish to map to
integers in the range 0 to N − 1, so that every key
maps to a distinct integer (no collisions).

The first step is to use a hash function g(x), to
map every key to a bucket B in the range 0 to r.
(For this step we use a simple hash function like the
one used for generating fingerprints in the pervious
section.)

Bi = {x ∈ S|g(x) = i} 0 ≤ i ≤ r

The function g(x) is not perfect so several keys can
map to the same bucket. Here we choose r ≤ N ,
so that the number of buckets is less than or equal
to the number of keys (to achieve 2.07 bits per key
we use r = N

5 , so that the average bucket size is 5).
The buckets are then sorted into descending order
according to the number of keys in each bucket |Bi|.

For the next step, a bit array, T , of size N is ini-
tialized to contain all zeros T [0 . . . N − 1]. This bit
array is used during construction to keep track of
which integers in the range 0 to N − 1 the minimal
perfect hash has already mapped keys to. Next we
must assume we have access to a family of random
and independent hash functions h1, h2, h3, . . . that
can be accessed using an integer index. In practice
it sufficient to use functions that behave similarly to
fully random independent hash functions and Belaz-
zougui et al. (2009) demonstrate how such functions
can be generated easily by combining two simple
hash functions.

Next is the “displacement” step. For each bucket,
in the sorted order from largest to smallest, they
search for a random hash function that maps all ele-
ments of the bucket to values in T that are currently
set to 0. Once this function has been found those

265

positions in T are set to 1. So, for each bucket Bi,
it is necessary to iteratively try hash functions, h`

for ` = 1, 2, 3, . . . to hash every element of Bi to a
distinct index j in T that contains a zero.

{h`(x)|x ∈ Bi} ∩ {j|T [j] = 1} = ∅

where the size of {h`(x)|x ∈ Bi} is equal to the size
of Bi. When such a hash function is found we need
only to store the index, `, of the successful function
in an array σ and set T [j] = 1 for all positions j that
h` hashed to. Notice that the reason the largest buck-
ets are handled first is because they have the most el-
ements to displace and this is easier when the array
T contains more empty positions (zeros).

The final step in the algorithm is to compress the σ
array (which has length equal to the number of buck-
ets |B|), retaining O(1) access. This compression is
achieved using simple variable length encoding with
an index array (Fredriksson and Nikitin, 2007).

3.2 Fingerprint and Rank Array
The hash function used in Stage 1 is perfect, so it
is guaranteed to return unique integers for seen n-
grams, but our hash function will also return inte-
ger values in the range 0 to N − 1 for n-grams that
have not been seen before (were not used to build the
hash function). To reduce the probability of these
unseen n-grams giving false positives results from
our model we store a fingerprint of each n-gram in
Stage 2 of our structure that can be compared against
the fingerprints of unseen n-grams when queried.
If these fingerprints of the queried n-gram and the
stored n-gram do not match then the model will
correctly report that the n-gram has not been seen
before. The size of this fingerprint determines the
rate of false positives. Assuming that the finger-
print is generated by a random hash function, and
that the returned integer of an unseen key from the
MPH function is also random, expected false posi-
tive rate for the model is the same as the probabil-
ity of two keys randomly hashing to the same value,
1

2m , where m is the number of bits of the finger-
print. The fingerprint can be generated using any
suitably random hashing algorithm. We use Austin
Appleby’s Murmurhash21 implementation to finger-
print each n-gram and then store the m highest or-
der bits. Stage 2 of the MPHR structure also stores

1http://murmurhash.googlepages.com/

a rank for every n-gram along with the fingerprint.
This rank is an index into the array of Stage 3 of
our structure that holds the unique values associated
with any n-gram.

3.3 Unique Value Array

We describe our storage of the values associated
with n-grams in our model assuming we are storing
frequency “counts” of n-grams, but it applies also to
storing quantized probabilities. For every n-gram,
we store the ‘rank’ of the frequency count r(key),
(r(key) ∈ [0...R − 1]) and use a separate array in
Stage 3 to store the frequency count value. This is
similar to quantization in that it reduces the num-
ber of bits required for storage, but unlike quanti-
zation it does not require a loss of any information.
This was motivated by the sparsity of n-gram fre-
quency counts in corpora in the sense that if we take
the lowest n-gram frequency count and the high-
est n-gram frequency count then most of the inte-
gers in that range do not occur as a frequency count
of any n-grams in the corpus. For example in the
Google Web1T data, there are 3.8 billion unique n-
grams with frequency counts ranging from 40 to 95
Billion yet these n-grams only have 770 thousand
distinct frequency counts (see Table 2). Because
we only store the frequency rank, to keep the pre-
cise frequency information we need only dlog2Ke
bits per n-gram, where K is the number of distinct
frequency counts. To keep all information in the
Google Web1T data we need only dlog2 771058e =
20 bits per n-gram. Rather than the bits needed
to store the maximum frequency count associated
with an n-gram, dlog2 maxcounte, which for Google
Web1T would be dlog2 95119665584e = 37 bits per
n-gram.

unique maximum n-gram unique
n-grams frequency count counts

1gm 1, 585, 620 71, 363, 822 16, 896
2gm 55, 809, 822 9, 319, 466 20, 237
3gm 250, 928, 598 829, 366 12, 425
4gm 493, 134, 812 231, 973 6, 838
5gm 646, 071, 143 86, 943 4, 201
Total 1, 447, 529, 995 71, 363, 822 60, 487

Table 1: n-gram frequency counts from Gigaword corpus

266

unique maximum n-gram unique
n-grams frequency count counts

1gm 13, 588, 391 95, 119, 665, 584 238, 592
2gm 314, 843, 401 8, 418, 225, 326 504, 087
3gm 977, 069, 902 6, 793, 090, 938 408, 528
4gm 1, 313, 818, 354 5, 988, 622, 797 273, 345
5gm 1, 176, 470, 663 5, 434, 417, 282 200, 079
Total 3, 795, 790, 711 95, 119, 665, 584 771, 058

Table 2: n-gram frequency counts from Google Web1T
corpus

3.4 Storage Requirements
We now consider the storage requirements of our S-
MPHR approach, and how it compares against the
Bloomier filter method of Talbot and Brants (2008).
To start with, we put aside the gains that can come
from using the ranking method, and instead con-
sider just the costs of using the CHD approach for
storing any language model. We saw that the stor-
age requirements of the Talbot and Brants (2008)
Bloomier filter method are a function of the number
of n-grams n, the bits of data d to be stored per n-
gram (with d = v + e: v bits for value storage, and
e bits for error detection), and a multiplying factor
of 1.23, giving an overall cost of 1.23d bits per n-
gram. The cost for our basic approach is also easily
computed. The explicit minimal PHF computed us-
ing the CHD algorithm brings a cost of 2.07 bits per
n-gram for the PHF itself, and so the comparable
overall cost to store a S-MPHR model is 2.07 + d
bits per n-gram. For small values of d, the Bloomier
filter approach has the smaller cost, but the ‘break-
even’ point occurs when d = 9. When d is greater
than 9 bits (as it usually will be), our approach wins
out, being up to 18% more efficient.

The benefits that come from using the ranking
method (Stage 3), for compactly storing count val-
ues, can only be evaluated in relation to the distribu-
tional characteristics specific corpora, for which we
show results in Section 6.

4 Compressed MPHR Approach

Our second approach, called Compressed MPHR,
further reduces the size of the model whilst main-
taining O(1) time to query the model. Most com-
pression techniques work by exploiting the redun-
dancy in data. Our fingerprints are unfortunately
random sequences of bits, so trying to compress

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

Array of K distinct probability values / frequency counts

p1 p2 p3 p4 p5 p6 ... pK

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

Fingerprint Array

Compressed Rank Array

Figure 2: Compressed MPHR structure

these is fruitless, but the ranks associated with n-
grams contain much redundancy and so are likely to
compress well. We therefore modify our original ar-
chitecture to put the ranks and fingerprints into sep-
arate arrays, of which the ranks array will be com-
pressed, as shown in Figure 2.

Much like the final stage of the CHD minimal
perfect hash algorithm we employ a random access
compression algorithm of Fredriksson and Nikitin
(2007) to reduce the size required by the array of
ranks. This method allows compression while re-
taining O(1) access to query the model.

The first step in the compression is to encode
the ranks array using a dense variable length cod-
ing. This coding works by assigning binary codes
with different lengths to each number in the rank ar-
ray, based on how frequent that number occurs. Let
s1, s2, s3, . . . , sK be the ranks that occur in the rank
array sorted by there frequency. Starting with most
frequent number in the rank array (clearly 1 is the
most common frequency count in the data unless it
has been pruned) s1 we assign it the bit code 0 and
then assign s2 the bit code 1, we then proceed by as-
signing bit codes of two bits, so s3 is assigned 00, s4
is assigned 01, etc. until all two bit codes are used
up. We then proceed to assign 3 bit codes and so on.
All of the values from the rank array are coded in
this form and concatenated to form a large bit vector
retaining their original ordering. The length in bits
for the ith number is thus blog2 (i+ 2)c and so the
number of bits required for the whole variable length
coded rank array is: b =

∑K
i=0 f(si)blog2 (i+ 2)c.

Where f() gives the frequency that the rank occurs

267

andK is the total number of distinct ranks. The code
for the ith number is the binary representation with
length blog2 (i+ 2)c of the number obtained using
the formula:

code = i+ 2− 2blog2 (i+2)c

This variable length coded array is not useful by it-
self because we do not know where each number be-
gins and ends, so we also store an index array hold
this information. We create an additional bit array
D of the same size b as the variable length coded ar-
ray that simply contains ones in all positions that a
code begins in the rank array and zeros in all other
positions. That is the ith rank in the variable length
coded array occurs at position select1(D, i), where
select1 gives the position of the ith one in the ar-
ray. We do not actually store theD array, but instead
we build a more space efficient structure to answer
select1 queries. Due the distribution of n-gram fre-
quencies, the D array is typically dense in contain-
ing a large proportion of ones, so we build a rank9sel
dictionary structure (Vigna, 2008) to answer these
queries in constant time. We can use this structure
to identify the ith code in our variable length en-
coded rank array by querying for its starting posi-
tion, select1(D, i), and compute its length using its
ending position, select1(D, i+1)−1. The code and
its length can then be decoded to obtain the original
rank:

rank = code + 2(length in bits) − 2

5 Tiered MPHR

In this section we describe an alternative route to ex-
tending our basic S-MPHR model to achieve better
space efficiency, by using multiple hash stores. The
method exploits distributional characteristics of the
data, i.e. that lower rank values (those assigned to
values shared by very many n-grams) are sufficient
for representing the value information of a dispro-
portionately large subset of the data. For the Google
Web 1T data, for example, we find that the first 256
ranks account for nearly 85% of distinct n-grams, so
if we could store ranks for these n-grams using only
the 8 bits they require, whilst allowing perhaps 20
bits per n-gram for the remaining 15%, we would
achieve an average of just under 10 bits per n-gram
to store all the rank values.

To achieve this gain, we might partition the n-
gram data into subsets requiring different amounts
of space for value storage, and put these subsets in
separate MPHRs, e.g. for the example just men-
tioned, with two MPHRs having 8 and 20 bit value
storage respectively. Partitioning to a larger number
h of MPHRs might further reduce this average cost.
This simple approach has several problems. Firstly,
it potentially requires a series of look up steps (i.e.
up to h) to retrieve the value for any n-gram, with
all hashes needing to be addressed to determine the
unseen status of an unseen n-gram. Secondly, mul-
tiple look ups will produce a compounding of error
rates, since we have up to h opportunities to falsely
construe an unseen n-gram as seen, or to construe
a seen n-gram as being stored in the wrong MPHR
and so return an incorrect count for it.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function #1

rank(key5) Redirect 1 Redirect 2 rank(key3) rank(key2) Redirect 1 Redirect 2 ...

Minimal Perfect Hash Function #2 Minimal Perfect Hash Function #3

rank(key) rank(key) ... rank(key) rank(key) rank(key) ... rank(key)

Figure 3: Tiered minimal perfect hash data structure

We will here explore an alternative approach that
we call Tiered MPHR, which avoids this compound-
ing of errors, and which limits the number of looks
ups to a maximum of 2, irrespective of how many
hashes are used. This approach employs a single
top-level MPHR which has the full set of n-grams
for its key-set, and stores a fingerprint for each. In
addition, space is allocated to store rank values, but
with some possible values being reserved to indicate
redirection to other secondary hashes where values
can be found. Each secondary hash has a minimal
perfect hash function that is computed only for the
n-grams whose values it stores. Secondary hashes
do not need to record fingerprints, as fingerprint test-
ing is done in the top-level hash.

For example, we might have a configuration of

268

three hashes, with the top-level MPHR having 8-bit
storage, and with secondary hashes having 10 and 20
bit storage respectively. Two values of the 8-bit store
(e.g. 0 and 1) are reserved to indicate redirection
to the specific secondary hashes, with the remaining
values (2 . . 255) representing ranks 1 to 254. The
10-bit secondary hash can store 1024 different val-
ues, which would then represent ranks 255 to 1278,
with all ranks above this being represented in the
20-bit hash. To look up the count for an n-gram,
we begin with the top-level hash, where fingerprint
testing can immediately reject unseen n-grams. For
some seen n-grams, the required rank value is pro-
vided directly by the top-level hash, but for others
a redirection value is returned, indicating precisely
the secondary hash in which the rank value will be
found by simple look up (with no additional finger-
print testing). Figure 3 gives a generalized presenta-
tion of the structure of tiered MPHRs. Let us repre-
sent a configuration for a tiered MPHR as a sequence
of bit values for their value stores, e.g. (8,10,20)
for the example above, or H = (b1,bh) more
generally (with b1 being the top-level MPHR).

The overall memory cost of a particular config-
uration depends on distributional characteristics of
the data stored. The top-level MPHR of config-
uration (b1,bh) stores all n-grams in its key-
set, so its memory cost is calculated as before as
N × (2.07 +m + b1) (m the fingerprint size). The
top-level MPHR must reserve h− 1 values for redi-
rection, and so covers ranks [1 . . (2b1 −h+1)]. The
second MPHR then covers the next 2b2 ranks, start-
ing at (2b1 − h+ 2), and so on for further secondary
MPHRs. This range of ranks determines the pro-
portion µi of the overall n-gram set that each sec-
ondary MPHR bi stores, and so the memory cost of
each secondary MPHR is N ×µi× (2.07+ bi). The
optimal T-MPHR configuration for a given data set
is easily determined from distributional information
(of the coverage of each rank), by a simple search.

6 Results

In this section, we present some results comparing
the performance of our new storage methods to some
of the existing methods, regarding the costs of stor-
ing LMs, and regarding the data access speeds that
alternative systems allow.

Method
Gigaword Web1T

full quantized full quantized
Bloomier 6.00 3.08 7.53 3.08
S-MPHR 3.76 2.76 4.26 2.76
C-MPHR 2.19 2.09 3.40 2.09
T-MPHR 2.16 1.91 2.97 1.91

Table 3: Space usage in bytes/ngram using 12-bit finger-
prints and storing all 1 to 5 grams

Method
Gigaword Web1T

full quantized full quantized
Bloomier 5.38 2.46 6.91 2.46
S-MPHR 3.26 2.26 3.76 2.26
C-MPHR 1.69 1.59 2.90 1.59
T-MPHR 1.66 1.41 2.47 1.41

Table 4: Space usage in bytes/n-gram using 8-bit finger-
prints and storing all 1 to 5 grams

6.1 Comparison of memory costs

To test the effectiveness of our models we built mod-
els storing n-grams and full frequency counts for
both the Gigaword and Google Web1T corpus stor-
ing all 1,2,3,4 and 5 grams. These corpora are very
large, e.g. the Google Web1T corpus is 24.6GB
when gzip compressed and contains over 3.7 bil-
lion n-grams, with frequency counts as large as 95
billion, requiring at least 37 bits to be stored. Us-
ing the Bloomier algorithm of Talbot and Brants
(2008) with 37 bit values and 12 bit fingerprints
would require 7.53 bytes/n-gram, so we would need
26.63GB to store a model for the entire corpus.

In comparison, our S-MPHR method requires
only 4.26 bytes per n-gram to store full frequency
count information and stores the entire Web1T cor-
pus in just 15.05GB or 57% of the space required by
the Bloomier method. This saving is mostly due to
the ranking method allowing values to be stored at a
cost of only 20 bits per n-gram. Applying the same
rank array optimization to the Bloomier method sig-
nificantly reduces its memory requirement, but S-
MPHR still uses only 86% of the space that the
Bloomier approach requires. Using T-MPHR in-
stead, again with 12-bit fingerprints, we can store
full counts for the Web 1T corpus in 10.50GB,
which is small enough to be held in memory on
many modern machines. Using 8-bit fingerprints, T-

269

Method bytes/
ngram

SRILM Full, Compact 33.6
IRSTLM, 8-bit Quantized 9.1

Bloomier 12bit fp, 8bit Quantized 3.08
S-MPHR 12bit fp, 8bit Quantized 2.76
C-MPHR 12bit fp, 8bit Quantized 2.09
T-MPHR 12bit fp, 8bit Quantized 1.91

Table 5: Comparison between approaches for storing all
1 to 5 grams of the Gigaword Corpus

MPHR can store this data in just 8.74GB.
Tables 3, 4 and 5 show results for all methods2 on

both corpora, for storing full counts, and for when
8-bit binning quantization of counts is used.

6.2 Access speed comparisons

The three models we present in this paper perform
queries in O(1) time and are thus asymptotically
optimal, but this does not guarantee they perform
well in practice, therefore in this section we mea-
sure query speed on a large set of n-grams and com-
pare it to that of modern language modeling toolk-
its. We build a model of all unigrams and bigrams
in the Gigaword corpus (see Table 1) using the C-
MPHR method, SRILM (Stolcke, 2002), IRSTLM
(Federico and Cettolo, 2007), and randLM3 (Talbot
and Osborne, 2007a) toolkits. RandLM is a mod-
ern language modeling toolkit that uses Bloom filter
based structures to store large language models and
has been integrated so that it can be used as the lan-
guage model storage for the Moses statistical ma-
chine translation system (Koehn et al., 2007). We
use randLM with the BloomMap (Talbot and Tal-
bot, 2008) storage structure option with 8 bit quan-
tized values and an error rate equivalent to using 8
bit fingerprints (as recommended in the Moses doc-
umentation). All methods are implemented in C++
and are run on a machine with 2.80GHz Intel Xeon
E5462 processor and 64 GB of RAM. In addition
we show a comparison to using a modern database,
MySQL 5.0, to store the same data. We measure
the speed of querying all models for the 55 mil-
lion distinct bigrams that occur in the Gigaword,

2All T-MPHR results are for optimal configurations: Gi-
gaword full:(2,3,16), Gigaword quant:(1,8), Web1T
full:(8,6,7,8,9,10,13,20), Web1T quant:(1,8).

3http://sourceforge.net/projects/randlm/

Test Time Speed
(hr :min:sec) queries/sec

C-MPHR 00 : 01 : 50 507362
IRSTLM 00 : 02 : 12 422802
SRILM 00 : 01 : 29 627077
randLM 00 : 27 : 28 33865

MySQL 5 29 : 25 : 01 527

Table 6: Look-up speed performance comparison for C-
MPHR and several other LM storage methods

these results are shown in Table 6. Unsurprisingly
all methods perform significantly faster than using a
database as they build models that reside completely
in memory. The C-MPHR method tested here is
slower than both S-MPHR and T-MPHR models due
to the extra operations required for access to the vari-
able length encoded array yet still performs similarly
to SRILM and IRSTLM and is 14.99 times faster
than using randLM.

7 Variable Length Fingerprints

To conclude our presentation of new methods for
space-efficient language model storage, we suggest
an additional possibility for reducing storage costs,
which involves using different sizes of fingerprint
for different n-grams. Recall that the only errors al-
lowed by our approach are false-positives, i.e. where
an unseen n-gram is falsely construed as being part
of the model and a value returned for it. The idea be-
hind using different sizes of fingerprint is that, intu-
itively, some possible errors seem worse than others,
and in particular, it seems likely to be less damaging
if we falsely construe an unseen n-gram as being a
seen n-gram that has a low count or probability than
as being one with a high count or probability.

False positives arise when our perfect hashing
method maps an unseen n-gram to position where
the stored n-gram fingerprint happens to coincide
with that computed for the unseen n-gram. The risk
of this occurring is a simple function of the size
of fingerprints. To achieve a scheme that admits a
higher risk of less damaging errors, but enforces a
lower risk of more damaging errors, we need only
store shorter fingerprints for n-grams in our model
that have low counts or probabilities, and longer
fingerprints for n-grams with higher values. This

270

idea could be implemented in different ways, e.g.
by storing fingerprints of different lengths contigu-
ously within a bit array, and constructing a ‘selection
structure’ of the kind described in Section 4 to allow
us to locate a given fingerprint within the bit array.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

rank(key5) Redirect 1 Redirect 2 rank(key3) rank(key2) Redirect 1 Redirect 2 ...

Minimal Perfect Hash Function

rank(key) rank(key) ... rank(key)

Minimal Perfect Hash Function

first j bits of
fingerprint

FP FP ... FP

last m - j
bits of

fingerprint
rank(key) rank(key) ... rank(key)

FP FP ... FP

Figure 4: Variable length fingerprint T-MPHR structure
using j bit fingerprints for the n-grams which are most
rare and m bit fingerprints for all others.

We here instead consider an alternative imple-
mentation, based on the use of tiered structures. Re-
call that for T-MPHR, the top-level MPHR has all
n-grams of the model as keys, and stores a fin-
gerprint for each, plus a value that may represent
an n-gram’s count or probability, or that may redi-
rect to a second-level hash where that information
can be found. Redirection is done for items with
higher counts or probabilities, so we can achieve
lower error rates for precisely these items by stor-
ing additional fingerprint information for them in
the second-level hash (see Figure 4). For example,
we might have a top-level hash with only 4-bit fin-
gerprints, but have an additional 8-bits of fingerprint
for items also stored in a second-level hash, so there
is quite a high risk (close to 1

16) of returning a low
count for an unseen n-gram, but a much lower risk
of returning any higher count. Table 7 applies this
idea to storing full and quantized counts of the Gi-
gaword and Web 1T models, when fingerprints in the
top-level MPHR have sizes in the range 1 to 6 bits,
with the fingerprint information for items stored in
secondary hashes being ‘topped up’ to 12 bits. This
approach achieves storage costs of around 1 byte per
n-gram or less for the quantized models.

Bits in
lowest
finger-
print

Giga-
word
Quan-
tized

Web1T
Quan-
tized

Giga-
word
All

Web1T
All

1 0.55 0.55 1.00 1.81
2 0.68 0.68 1.10 1.92
3 0.80 0.80 1.21 2.02
4 0.92 0.92 1.31 2.13
5 1.05 1.04 1.42 2.23
6 1.17 1.17 1.52 2.34

Table 7: Bytes per fingerprint for T-MPHR model using 1
to 6 bit fingerprints for rarest n-grams and 12 bit (in total)
fingerprints for all other n-grams. (All configurations are
as in Footnote 2.)

8 Conclusion

We have presented novel methods of storing large
language models, consisting of billions of n-grams,
that allow for quantized values or frequency counts
to be accessed quickly and which require far less
space than all known approaches. We show that it
is possible to store all 1 to 5 grams in the Gigaword
corpus, with full count information at a cost of just
1.66 bytes per n-gram, or with quantized counts for
just 1.41 bytes per n-gram. We have shown that our
models allow n-gram look-up at speeds comparable
to modern language modeling toolkits (which have
much greater storage costs), and at a rate approxi-
mately 15 times faster than a competitor approach
for space-efficient storage.

References

Djamal Belazzougui, Fabiano Botelho, and Martin Diet-
zfelbinger. 2009. Hash, displace, and compress. Al-
gorithms - ESA 2009, pages 682–693.

Burton H. Bloom. 1970. Space/time trade-offs in
hash coding with allowable errors. Commun. ACM,
13(7):422–426.

Thorsten Brants and Alex Franz. 2006. Google Web
1T 5-gram Corpus, version 1. Linguistic Data Con-
sortium, Philadelphia, Catalog Number LDC2006T13,
September.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. 2004. The bloomier filter: an efficient
data structure for static support lookup tables. In
SODA ’04, pages 30–39, Philadelphia, PA, USA.

271

Philip Clarkson and Ronald Rosenfeld. 1997. Statis-
tical language modeling using the CMU-cambridge
toolkit. In Proceedings of ESCA Eurospeech 1997,
pages 2707–2710.

Marcello Federico and Nicola Bertoldi. 2006. How
many bits are needed to store probabilities for phrase-
based translation? In StatMT ’06: Proceedings of the
Workshop on Statistical Machine Translation, pages
94–101, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Marcello Federico and Mauro Cettolo. 2007. Efficient
handling of n-gram language models for statistical ma-
chine translation. In StatMT ’07: Proceedings of the
Second Workshop on Statistical Machine Translation,
pages 88–95, Morristown, NJ, USA. Association for
Computational Linguistics.

Edward Fredkin. 1960. Trie memory. Commun. ACM,
3(9):490–499.

Kimmo Fredriksson and Fedor Nikitin. 2007. Simple
compression code supporting random access and fast
string matching. In Proc. of the 6th International
Workshop on Efficient and Experimental Algorithms
(WEA’07), pages 203–216.

Ulrich Germann, Eric Joanis, and Samuel Larkin. 2009.
Tightly packed tries: How to fit large models into
memory, and make them load fast, too. Proceedings of
the Workshop on Software Engineering, Testing, and
Quality Assurance for Natural Language (SETQA-
NLP 2009), pages 31–39.

Joshua Goodman and Jianfeng Gao. 2000. Language
model size reduction by pruning and clustering. In
Proceedings of ICSLP’00, pages 110–113.

David Graff. 2003. English Gigaword. Linguistic Data
Consortium, catalog number LDC2003T05.

Boulos Harb, Ciprian Chelba, Jeffrey Dean, and Sanjay
Ghemawat. 2009. Back-off language model compres-
sion. In Proceedings of Interspeech, pages 352–355.

Bo-June Hsu and James Glass. 2008. Iterative language
model estimation:efficient data structure & algorithms.
In Proceedings of Interspeech, pages 504–511.

F. Jelinek, B. Merialdo, S. Roukos, and M. Strauss I.
1990. Self-organized language modeling for speech
recognition. In Readings in Speech Recognition, pages
450–506. Morgan Kaufmann.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: open source
toolkit for statistical machine translation. In ACL ’07:
Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions, pages
177–180, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proceedings of DARPA
Broadcast News Transcription and Understanding
Workshop, pages 270–274.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Processing,
volume 2, pages 901–904, Denver.

David Talbot and Thorsten Brants. 2008. Randomized
language models via perfect hash functions. Proceed-
ings of ACL-08 HLT, pages 505–513.

David Talbot and Miles Osborne. 2007a. Randomised
language modelling for statistical machine translation.
In Proceedings of ACL 07, pages 512–519, Prague,
Czech Republic, June.

David Talbot and Miles Osborne. 2007b. Smoothed
bloom filter language models: Tera-scale LMs on the
cheap. In Proceedings of EMNLP, pages 468–476.

David Talbot and John M. Talbot. 2008. Bloom maps.
In 4th Workshop on Analytic Algorithmics and Com-
binatorics 2008 (ANALCO’08), pages 203—212, San
Francisco, California.

David Talbot. 2009. Succinct approximate counting of
skewed data. In IJCAI’09: Proceedings of the 21st
international jont conference on Artifical intelligence,
pages 1243–1248, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Sebastiano Vigna. 2008. Broadword implementation of
rank/select queries. In WEA’08: Proceedings of the
7th international conference on Experimental algo-
rithms, pages 154–168, Berlin, Heidelberg. Springer-
Verlag.

Edward Whittaker and Bhinksha Raj. 2001.
Quantization-based language model compres-
sion. Technical report, Mitsubishi Electric Research
Laboratories, TR-2001-41.

272

