
Minimal Perfect Hash Rank: Compact Storage of Large
N-gram Language Models

David Guthrie
Department of Computer Science

University of Sheffield
Sheffield, England, S1 4DP

D.Guthrie@dcs.shef.ac.uk

Mark Hepple
Department of Computer Science

University of Sheffield
Sheffield, England, S1 4DP

M.Hepple@dcs.shef.ac.uk

ABSTRACT
In this paper we propose a new method of compactly storing
n-gram language models called Minimal Perfect Hash Rank
(MPHR) that uses significantly less space than all known
approaches. It requires O(n) construction time and allows
for O(1) random access of probability values or frequency
counts associated with n-grams. We make use of minimal
perfect hashing to store fingerprints of n-grams in an ap-
proach that is similar to, but more space efficient than, that
used by [17], and then exploit distributional characteristics
of n-gram data to achieve even more compact storage. This
approach can store an 8-bit quantized version of the full
Google Web 1T data at a cost of only 1.41 bytes per n-
gram. Furthermore, it can store full count information for
the same Google data at a cost of just less than 2.5 bytes per
n-gram, which is only 36% of the space required by the [17]
approach. We compare this language model storage struc-
ture with several recent approaches, as well as evaluate the
actual running time of MPHR when storing and querying
billions of n-grams keys.

1. INTRODUCTION
The availability of very large text collections, such as the Gi-
gaword corpus of newswire [11], and the Google 1T 1-5gram
corpus [4], have made it possible to build models incorpo-
rating counts of billions of n-grams. The storage of such
large language models, however, presents serious problems,
given both their size and the need to provide rapid access.
A standard approach for language model storage is the use
of compact trie structures, but these structures do not scale
well and require space proportional to both to the number of
n-grams and the vocabulary size. Recent advances [17, 19]
have involved the development of randomized models, which
allow a considerable reduction in the space required to store
a model, at the cost of allowing some limited extent of false
positives when the model is queried with previously unseen
n-grams. The aim is to achieve sufficiently compact storage
that the representation of even a large language model can
be held totally within memory, avoiding the latencies of disk

Copyright is held by the author/owner(s). SIGIR 2010 WEB N-GRAM
Workshop, July 23, 2010, Geneva, Switzerland.

access. These randomized models exploit the idea that it is
not actually necessary to store the n-grams of the model,
as long as, when queried with an n-gram, the model returns
the correct count or probability for it, and clever use of hash
functions is made to achieve this end. These techniques al-
low the storage of language models that no longer depend
on the size of the vocabulary, but only on the number of
n-grams.

The first method published for randomized storage of lan-
guage models is that of [19, 18], which is based on the use of
Bloom Filters [2]. As we shall see, this approach is limited in
its applicability to being used with particular quantization
schemes, where the range of values to be stored is quite lim-
ited, and where the majority of items are associated with
lower values in the range (or speed of access will suffer).
Furthermore, the favorable space characteristics of the ap-
proach are evident only where reasonably high error rates
can be tolerated.

These problems are solved by the approach of [17], which is
based on the Bloomier Filter technique of [5]. A Bloomier
Filter can be thought of as a perfect hash function (PHF)
[3], which is a function that maps a set of keys S of size n
(i.e. |S| = n) to distinct integers in the range [0 . .m− 1],
m ≥ n, i.e. which produces no collisions for the predeter-
mined keyset S. The PHF of a Bloomier filter is implicit, in
that the approach allows values to be stored and retrieved
without there being an identifiable component that maps
keys to integers in the range [0 . .m− 1]. Bloomier Filters,
like Bloom Filters, bring a risk of false positives. This risk is
managed by storing values in combination with a fingerprint
of the key, The space requirement per stored item is then
the sum of the bits needed to store values, plus the number
of additional bits assigned to catch errors via fingerprinting.
The downside of this approach is that the hash construction
algorithm requires m > n, with a ratio m/n = 1.23 be-
ing recommended to ensure a high probability of successful
construction.

In this paper, we advance three proposals for improving the
effectiveness of language model storage. The first proposal
is to replace the use of Bloomier Filters with an alterna-
tive perfect hashing method which generates PHFs that are
minimal, i.e. which map n keys into a range of size m, such
that m = n. These minimal PHFs are explicit and have
an associated cost-per-key for the PHF itself, but this addi-
tional cost trades against the benefit of having m = n for

22

storing values/fingerprints (rather than m/n = 1.23), giving
space efficiency savings of around 10–16% for storing typical
language models. The approach provides for random access
of values that is both O(1) and very fast in practice (as we
demonstrate). Our two further proposals exploit distribu-
tional characteristics of the data to achieve more compact
storage, using ranks to represent sparse count information,
and using two-tiered hash structures to partition the data
according to the space required for value storage. This com-
bination of techniques allows us, for example, to represent
the full count information of the Google Web1T corpus [4]
(where count values range up to 95 billion) at a cost of just
less than 2.5 bytes per n-gram (assuming 8-bit fingerprints,
for excluding false positives). This is surprisingly little more
than the 2.26 bytes per n-gram that our basic model would
need to represent a language model employing 8-bit quan-
tization (again with 8-bit fingerprints), or the 2.46 bytes
per n-gram that would be needed by the Bloomier Filter
approach of [17] to store 8-bit quantized values with 8-bit
fingerprints.

2. RELATED WORK
A range of lossy methods have been proposed, that can re-
duce the storage requirement of a language model by dis-
carding information from it. A key method is quantization
[21], which reduces the information that can be associated
with n-grams to a fixed set of discrete values. Each such
value stands in place of a range of possible probabilities (or
frequency counts), and so mapping probabilities (or counts)
to quantized values discards information by losing precision.
A common case is 8-bit quantization, which allows for 256
distinct ‘quantum’ values, but other schemes are possible,
and different approaches may be taken for how initial values
are mapped onto quantum values. Other lossy methods in
the use of entropy pruning techniques [15] or clustering [14,
10] to reduce the number of n-grams that must be stored.
In what follows, we focus on the methods that have been
used for storing language models, irrespective of whether or
not lossy methods have been applied to first reduce the size
of the model.

2.1 Language model storage using Trie struc-
tures

A widely used approach for storing language models employs
the trie data structure [8], which compactly represents se-
quences in the form of a prefix tree, where each step down
from the root of the tree adds a new element to the se-
quence represented by the steps taken so far. Thus, where
two sequences share a prefix, that common prefix is jointly
represented by a single node within the trie. For language
modeling purposes, the steps through the trie correspond
to words of the vocabulary, although these are in practice
usually represented by 24 or 32 bit integers (that have been
uniquely assigned to each word). For nodes in the trie that
correspond to complete n-grams, other information can be
stored, e.g. a probability or count value. Most modern
language modeling toolkits employ some version of a trie
structure for storage, including SRILM [16], CMU toolkit
[6], MITLM [13], and IRSTLM [7]. An advantage of this
structure is that it allows the stored n-grams to be enumer-
ated. However, although this approach achieves compact-
ness of representation for sequences, its memory costs are

still such that very large language models require very large
storage space, far more than the randomized methods to be
described shortly, and far more than might be held in mem-
ory as a basis for more rapid access. The memory costs of
such models have been addressed using compression meth-
ods, see [12], but such extensions of the approach present
further obstacles to rapid access.

2.2 Randomized Language Models
Recent randomized language models [19, 17, 18] make make
use of random hash functions to map n-grams to their associ-
ated probabilities or counts. These methods store language
models in relatively little space by not actually storing the
n-gram key in the structure and allowing a small probabil-
ity of returning a false positive. These structures do not
allow enumeration over the n-grams in the model, but for
many applications this is not a requirement and their space
and speed advantages make them extremely attractive. In
the case of n-grams these models always return the correct
probability associated with an n-gram if the n-gram is in the
model, but for n-grams that are not in the model there is
a small probability that the model will return some random
probability instead of correctly reporting that the n-gram
was not found. There have been two major approaches used
for storing random access language models: Bloom Filters
and Bloomier Filters. We give an overview of these ap-
proaches below.

2.2.1 Bloom Filters
A Bloom filter [2] is a data structure used in membership
queries. It can be used to answer simple queries of the form
“Is this key in the Set?”. This is a weaker structure than
a dictionary or hash table which also can associate a value
with a key. Bloom filters use well below the information
theoretic lower bound of space required to actually store the
keys and can answer queries in O(1) time. Bloom filters
achieve this feat by allowing a small probability of returning
a false positive. A Bloom filter stores a set S of n elements
in a bit array B of size m. Initially B is set to contain all
zeros. To store an item x from S in B we compute k random
independent hash functions on x that each return a value in
the range [0 . .m− 1]. These values serve as indices to the
bit array B and the bits at those positions are set to 1. We
do this for all elements in S, storing to the same bit array.
Elements may hash to an index in B that has already been
set to 1 and in this case we can think of these elements as
“sharing” this bit. To test whether the set S contains a key,
say w, we run our k hash functions on w and check to see
if all those locations in B are set to 1. If w ∈ S then the
bloom filter will always declare that w belongs to S, but if
x /∈ S then the filter can only say with high probability that
w is not in S. This error rate depends on the number of
k hash functions and the ratio of m/n. For instance with
k = 3 hash functions and a bit array of size m = 20n, we
can expect to get a false positive rate of 0.0027.

In [19] and [18], Bloom filters are adapted to allow the stor-
age of values with keys (i.e. n-grams) by concatenating the
key and value to form single item that is inserted into the
filter. Given a quantization scheme allowing values in the
range [1 . . V], a quantized value v is stored by inserting into
the filter all pairings of the n-gram with values from 1 up to
v. To retrieve the value for a given key, we serially probe the

23

filter for pairings of the key with each value from 1 upwards,
until the filter returns false. The last value found paired with
the key in the filter is the value returned. This approach is
called the optimal counting Bloom filter. Talbot and Os-
borne use a simple logarithmic quantization of counts that
will produce quite limited quantized value ranges, where
most items will have values that are low in the range, so that
the serial look-up process will require quite a low number of
steps on average. For alternative quantization schemes that
involve greater value ranges (e.g. the 256 values of an 8-
bit scheme) and/or distribute n-grams more evenly across
the quantized values, the average number of look-up steps
required will be higher and hence the speed of access per
n-gram accordingly lower. This fact restricts the applicabil-
ity of the approach to limited contexts of use. Furthermore,
the requirement of inserting n-grams more than once in the
filter (i.e. with values from 1 up to the actual value v being
stored) can substantially reduce the space efficiency of the
method. As mentioned, the case k = 3,m = 20n produces a
false positive rate of 0.0027, but with a dataset that required
each n-gram to be stored, say, 3 times on average (i.e. as 3
key-value pairs), the true storage cost would become 60 bits
per original n-gram. To achieve a lower error rate, we can
either increase the number of hash functions used, bringing
additional computation cost, or increase the number of bits
allowed per item stored.

A variant of this approach, which we note for later compar-
isons, is the simple Bloom map [20]. This approach stores
each key (n-gram) only once, using a different set of hash
functions to store the key depending on its associated value.
To retrieve the value for a key, we test for it in the filter using
the hash functions for each different value in turn until we
receive a positive answer, or have tested for all values unsuc-
cessfully (i.e. for an unseen n-gram). This retrieval model
makes the approach computationally expensive, again limit-
ing its practical applicability, but the approach is optimally
efficient amongst Bloom filter methods for space usage, and
its minimum space requirements can be straightforwardly
computed in relation to the entropy of the data set.

2.2.2 Bloomier Filters
More recently, [17] proposed using the Bloomier Filter tech-
nique of [5] as a basis for storing large language models.
Bloomier Filters generalize the Bloom Filter to allows val-
ues for keys to be stored in the filter. To test whether a
given key is present in a populated Bloomier filter, we apply
k hash functions to the key and use the results as indices for
retrieving the data stored at k locations within the filter,
similarly to look-up in a Bloom filter. In this case, however,
the data retrieved from the filter consists of k bit vectors,
which are combined with a fingerprint of the key, using bit-
wise XOR, to return the stored value. The risk of false
positives is managed by making bit vectors be longer than
the minimum length required to store values, and these ad-
ditional error bits have a fairly predictable impact on error
rates, i.e. with e error bits, we anticipate the probability of
falsely construing an unseen n-gram as being stored in the
filter to be 2−e. The algorithm required to correctly popu-
late the Bloomier filter with stored data is complicated, and
we shall not consider its details here.

As noted earlier, a Bloomier Filter can be thought of as a

Figure 1: MPHR structure for storing n-gram lan-
guage models

perfect hash function (PHF) [3], which is a function that
maps a set of keys S of size n (i.e. |S| = n) to distinct in-
tegers in the range [0 . .m− 1], m ≥ n, i.e. which produces
no collisions for the predetermined keyset S. When m = n
we have a minimal PHF. The PHF of a Bloomier filter is
implicit, in that the approach allows values to correctly re-
trieved without there being an identifiable component that
maps keys to integers in the range [0 . .m− 1]. The algo-
rithm used to populate the Bloomier filter requires m > n,
with a ratio m/n = 1.23 being recommended to ensure a
high probability of successful construction. This factor con-
tributes to the space required to store a language model,
i.e. a model containing n n-grams, using v bits to represent
values and e bits for error detection, required 1.23 ·n · (v+e)
bits of space.

3. MINIMAL PERFECT HASH RANKING
APPROACH

We propose a data structure called Minimal Perfect Hash
Rank (MPHR) that is more compact than that of [17] while
still keeping a constant look up time. Our structure can be
divided into 3 parts:

Stage 1 Minimal Perfect Hash Function

Stage 2 Fingerprint Rank Array

Stage 3 Unique Value Array

This structure is illustrated in Figure 1.

3.1 Minimal Perfect Hash Function
The first part of the structure is a minimal perfect hash
function that maps every n-gram in the training data to a
distinct integer in the range 0 to N−1, where N is the total
number of n-grams to store. We use these integers as indices
into the array of Stage 2 of our structure.

We use the Hash, displace, and compress (CHD) [1] algo-
rithm to generate a minimal perfect hash function that re-
quires requires 2.07 bits per key and has O(1) access. The
algorithm works as follows. Given a set S that contains
N = |S| keys (in our case n-grams) that we wish to map to
integers in the range 0 to N − 1, so that every key maps to
a distinct integer (no collisions).

24

The first step is to use a hash function g(x), to map every
key to a bucket B in the range 0 to r. (For this step we
use a simple hash function like the one used for generating
fingerprints in the pervious section.)

Bi = {x ∈ S|g(x) = i} 0 ≤ i ≤ r

The function g(x) is not perfect so several keys can map
to the same bucket. Here we choose r ≤ N , so that the
number of buckets is less than or equal to the number of
keys (to achieve 2.07 bits per key we use r = N

5
, so that the

average bucket size is 5). The buckets are then sorted into
descending order according to the number of keys in each
bucket |Bi|.

For the next step, a bit array, T , of size N is initialized to
contain all zeros T [0 . . . N − 1]. This bit array is used dur-
ing construction to keep track of which integers in the range
0 to N − 1 the minimal perfect hash has already mapped
keys to. Next we must assume we have access to a family of
random and independent hash functions h1, h2, h3, . . . that
can be accessed using an integer index. In practice it suffi-
cient to use functions that behave similarly to fully random
independent hash functions and [1] demonstrate how such
functions can be generated easily by combining two simple
hash functions.

Next is the “displacement” step. For each bucket, in the
sorted order from largest to smallest, they search for a ran-
dom hash function that maps all elements of the bucket to
values in T that are currently set to 0. Once this function
has been found those positions in T are set to 1. So, for each
bucket Bi, it is necessary to iteratively try hash functions,
h` for ` = 1, 2, 3, . . . to hash every element of Bi to a distinct
index j in T that contains a zero.

{h`(x)|x ∈ Bi} ∩ {j|T [j] = 1} = ∅

Where the size of {h`(x)|x ∈ Bi} is equal to the size of Bi.
When such a hash function is found we need only to store
the index, `, of the successful function in an array σ and set
T [j] = 1 for all positions j that h` hashed to. Notice that
the reason the largest buckets are handled first is because
they have the most elements to displace and this is easier
when the array T contains more empty positions (zeros).

The final step in the algorithm is to compress the σ ar-
ray (which has length equal to the number of buckets |B|),
retaining O(1) access. This compression is achieved using
simple variable length encoding with an index array [9].

3.2 Fingerprint Rank Array
The hash function used in Stage 1 is perfect, so it is guar-
anteed to return unique integers for seen n-grams, but our
hash function will also return integer values in the range 0 to
N − 1 for n-grams that have not been seen before (were not
used to build the hash function). To reduce the probability
of these unseen n-grams giving false positives results from
our model we store a fingerprint of each n-gram in Stage 2 of
our structure that can be compared against the fingerprints
of unseen n-grams when queried. If these fingerprints of the
queried n-gram and the stored n-gram do not match then
the model will correctly report that the n-gram has not been
seen before. The size of this fingerprint determines the rate
of false positives. The fingerprint can be generated using

any suitably random hashing algorithm. We use Austin Ap-
pleby’s Murmurhash21 implementation to fingerprint each
n-gram and then store the m highest order bits. Stage 2
of the MPHR structure also contains an array to store the
rank for every n-gram. This rank is an index into the ar-
ray of Stage 3 of our structure that holds the unique values
associated with any n-gram.

3.3 Unique Value Array
We describe our storage of the values associated with n-
grams in our model assuming we are storing frequency“counts”
of n-grams, but it applies also to storing quantized probabil-
ities. For every n-gram, we store the ‘rank’ of the frequency
count r(key), (r(key) ∈ [0...R − 1]) and use a separate ar-
ray in Stage 3 to store the frequency count value. This is
similar to quantization in that it reduces the the number
of bits required for storage, but unlike quantization it does
not require a loss of any information. This was motivated
by the sparsity n-gram frequency counts in corpora in the
sense that if we take the lowest n-gram frequency count and
the highest n-gram frequency count then most of the inte-
gers in that range do not occur as a frequency count of any
n-grams in the corpus. For example in the Google Web1T
data, there are 3.8 billion unique n-grams with frequency
counts ranging from 40 to 95 Billion yet these n-grams only
have 770 thousand distinct frequency counts (see Table 1).
Because we only store the frequency rank, to keep the pre-
cise frequency information we need only dlog2Ke bits per
n-gram, where K is the number of distinct frequency counts.
To keep all information in the Google Web1T data we need
only dlog2 771058e = 20 bits per n-gram. The memory sav-
ings in this step is thus due to the fact that the number of
bits needed to store all the unique ranks is much less than
the bits needed to store the maximum frequency count as-
sociated with an n-gram, dlog2Ke � dlog2 maxcounte.

Google maximum n-gram unique frequency
Web1T frequency count counts

1gm 95, 119, 665, 584 238, 592
2gm 8, 418, 225, 326 504, 087
3gm 6, 793, 090, 938 408, 528
4gm 5, 988, 622, 797 273, 345
5gm 5, 434, 417, 282 200, 079
Total 95, 119, 665, 584 771, 058

Table 1: unique n-gram frequency counts from
Google Web1T corpus

4. STORAGE REQUIREMENTS
We next consider the storage requirements of our approach,
and how they compare against those of other models, most
particularly the Bloomier filter method of [17]. To start
with, we put aside the gains that can come from using the
ranking method, and instead consider just the costs of using
the CHD approach for storing any language model.

We saw that the storage requirements of the Bloomier fil-
ter approach (RPH) [17] are a function of the number of
n-grams n, the bits of data d to be stored per n-gram (with
d = v + e: v bits for value storage, and e bits for error

1available at http://murmurhash.googlepages.com/

25

detection), and a multiplying factor of 1.23, due to the non-
miminality of the implicit PHF, giving an overall cost in bits
of: 1.23 · n · (v + e)
or of 1.23d per n-gram. The costs for our approach are sim-
ilarly computed, but there is no multiplying factor, as our
PHFs are minimal. However, the explicit minimal PHF com-
puted using the CHD algorithm do bring an additional cost
of 2.07 bits per n-gram for the PHF itself, and so the com-
parable overall cost to store a model is: n · (2.07 + d)
or 2.07 + d per n-gram. For very small values of d, the
Bloomier filter approach has the smaller cost, but the ‘break-
even’ point occurs when d = 9, with our approach having
the smaller cost, which in the limit could rise to a saving of
around 18% for very large d. Table 2 shows some compa-
rable costs of the two approaches for some plausible model
settings. 5 compares the bytes per n-gram requirement of
our model to a range of other methods.

fingerprint value RPH MPHR savings
(bits) bytes/n-gram

8 8 2.46 2.26 8.18%
8 12 3.08 2.76 10.28%
8 20 4.31 3.76 12.69 %
8 32 6.15 5.26 14.49 %
12 8 3.08 2.76 10.28%
12 12 3.69 3.26 11.69%
12 20 4.92 4.26 13.44 %
12 32 6.77 5.75 14.87 %
16 8 3.69 3.26 11.69%
16 12 4.31 3.76 12.69%
16 20 5.54 4.76 14.02 %
16 32 7.38 6.26 15.19 %

Table 2: Comparison between RPH [17] and the
MPHR method

The benefits that come from using the ranking method, for
compactly storing count values, can only be evaluated in re-
lation to the distributional characteristics specific corpora.
To demonstrate this benefit, we stored n-grams and full fre-
quency counts for the entire Google Web1T corpus [4]. This
corpus is 24.6GB compressed and contains over 3.7 billion
n-grams, so storing full frequency counts for every n-gram in
a representation where they can be accessed quickly can be
difficult. The Web1T corpus contains frequencies as large as
95 billion, so we would need at least 37 bits to store accurate
counts for each n-gram. Using the RPH algorithm of [17]
with 37 bit values and 12 bit fingerprints would require 7.53
bytes/n-gram, so we would need 26.63GB to store a model
for the entire corpus.

In comparison, our MPHR method requires only 4.26 bytes
per n-gram to store full frequency count information and
so can store the entire corpus in just 15.05GB or 57%
of the space required by the RPH method. This savings is
mostly due to the fact that we need only 20 bits per n-gram,
instead of 37, to store the ranks for every n-gram frequency
count in the corpus (as shown in Section 3). We can apply
the same rank array optimization to the RPH method, so
that it would also use only 20 bits to store ranks and an
additional array to hold the actual frequency counts; this
significantly reduces the amount of memory required, but
the MPHR structure still uses 86% of the space required by

the RPH approach.

5. TIERED MPHR
In this section we describe how our basic model can be elabo-
rated into one that uses multiple hash stores to achieve even
greater space efficiency. Although the MPHR approach de-
scribed in the last section achieves a significant improvement
in space efficiency over previous methods, there is still a con-
siderable incentive on achieving even more efficient space
usage, given the size of current large language models and
the larger ones that may be over the horizon. Our use of
count ranks to record count information may be seen as ex-
ploiting distributional characteristics of the data in achiev-
ing more compact storage, i.e. the fact that in the range
up to the maximum count found in some data, many of the
possible count values are not used, and so replacing actual
counts with ranks allows them to be represented using a
much smaller numerical range.

In this section, we further exploit distributional character-
istics of the data to achieve even more compact storage of
this information, and specifically the fact that lower rank
values (i.e. those assigned to count values shared by very
many n-grams) are sufficient for representing the count in-
formation of a disproportionately large portion of the data.
For the Google Web 1T data, for example, we find that the
first 256 ranks account for nearly 85% of distinct n-grams,
so if we could store ranks for these n-grams using only the 8
bits they require, whilst allowing perhaps 20 bits per n-gram
for the remaining 15%, we would achieve an average of just
under 10 bits per n-gram to store all the rank values.

As a simple approach to achieving this gain, we might parti-
tion the n-gram data into subsets requiring different amounts
of space for storing rank values, and store these subsets in
separate MPHR structures, e.g. with two MPHRs having 8
and 20 bits respectively for storing the ranks for the example
just mentioned. A more extensive partitioning of the data
might further reduce this average cost, e.g. with subsets re-
quiring 4, 8, 12, 16 and 20 bits, respectively. This simple ap-
proach has several problems. Firstly, it potentially requires
a series of look up steps (i.e. up to 5 for the latter example)
to retrieve the count of any n-gram, with all hashes needing
to be addressed to determine the unseen status of an unseen
n-gram. Secondly, and perhaps more seriously, such multi-
ple look ups produce a compounding of false-positive error
rates. Thus, we might falsely accept an unseen n-gram as
seen in each look up step, and we may additionally construe
a seen n-gram as being stored in the wrong MPHR and so
return an incorrect count for it.

We will here explore an alternative approach to using multi-
ple hashes that we call Tiered MPHR, which entirely avoids
the compounding of false-positive errors, and which limits
the maximum number of looks up steps to 2, irrespective
of how many hashes are used. In this approach, there is a
single top-level MPHR which has the full set of n-grams for
its key-set, and which stores a fingerprint for every n-gram.
In addition, space is allocated to store rank values, but with
some possible values of this store being reserved to indicate
redirection to other secondary hashes where count values
can be found. Each secondary hash has a minimal perfect
hash function that is computed only for the n-grams whose

26

Figure 2: Tiered minimal perfect hash data struc-
ture

values it stores. Secondary hashes do not need to record fin-
gerprints, as fingerprint testing is done in the top-level hash.
For example, we might have a configuration of three hashes,
with the top-level MPHR having 8-bit storage, and with
secondary hashes having 10 and 20 bit storage respectively.
Two values of the 8-bit store (e.g. 0 and 1) are reserved to
indicate redirection to the specific secondary hashes, with
the remaining values (2 . . 255) representing ranks 1 to 254.
The 10-bit secondary hash can store 1024 different values,
which would then represent ranks 255 to 1278, with all ranks
above this being represented in the 20-bit hash. To look up
the count for an n-gram, we begin with the top-level hash,
where fingerprint testing can immediately reject unseen n-
grams. For some seen n-grams, the required rank value is
provided directly by the top-level hash, but for others a redi-
rection value is returned, indicating precisely the secondary
hash in which the rank value will be found by simple look up
(with no additional fingerprint testing). Figure 2 gives a gen-
eralized presentation of the structure of two-level MPHRs.
Let us represent a configuration for a two-level MPHR as
a sequence of bit values for their rank storage components,
e.g. (8,10,20) for the example above, or H = (b1,bh)
more generally.

The overall memory cost of a particular configuration de-
pends crucially on distributional characteristics of the data
to be stored. In particular, for each rank value r, we need
to know the proportion of n-grams accounted for by ranks
[1 . . r], which we denote µ(r), which is easily computed from
the data. The top-level MPHR of a configuration H =
(b1,bh) has all n-grams from the data in its key-set, so
its memory cost is calculated as before as N×(2.07+m+b1)
(where m is the fingerprint size). The memory cost for
each secondary MPHR depends on the number of n-grams
it stores, which in turn depends on the range of ranks that
it covers. For example, a secondary hash with storage size
bi that covers ranks rj , . . , rk has N × (µ(rk)− µ(rj−1)) n-
grams in its key-set and so has memory cost N × (µ(rk) −
µ(rj−1))× (2.07 + bi). The range of ranks covered by a sec-
ondary hash depends on the hashes that precede it in the
configuration sequence and the overall number of hashes. In
a configuration with h hashes overall, the top-level MPHR
must reserve h−1 values for redirection, and so covers ranks
[1 . . (2b1 −h+ 1)]. The second hash will then cover the next

2b2 ranks, starting at (2b1 − h+ 2), and so on.

Table 3 shows two-level MPHR configurations that are op-
timally space-efficient for the Google Web1T data, for dif-
ferent numbers of hashes used (as determined by a simple
brute-force search of alternative configurations). We see that
even a single secondary hash is sufficient to bring the average
memory cost below 25 bits per n-gram. Having more hashes
allows the cost to be further reduced, but with diminishing
returns for larger numbers of hashes. Having 5 hashes over-
all is sufficient to bring the cost per n-gram below 24 bits
(3 Bytes) using 12 bit fingerprints. If we instead use only
8-bit fingerprints the space usage drops to 19.77 bits (2.5
Bytes) per n-gram. So, using 8 bit fingerprints and storing
full n-gram counts this model is 36% of the size of the RPH
model proposed by [17].

Number Configuration Counts Bits per
of hashes in data n-gram

2 (9,20) full 24.96
3 (8,11,20) full 24.29
5 (8,7,9,12,20) full 23.94
8 (8,6,7,8,9,10,13,20) full 23.77
2 (1,8) quantized 15.24

Table 3: Optimal Tiered MPHR configurations for
Google Web1T corpus (using 12-bit fingerprints).

6. FALSE POSITIVE RATES
The trade-offs of our compact storage model is the possibility
of false positives. A false positive is when an unseen n-gram
is queried, the model believes that this n-gram actually is
stored in it and returns a (incorrect) value. This is because,
as we mentioned in the previous section, the MPH function
will return a distinct integer between [0..N −1] for N stored
n-grams, it will also, return an integer within that range
for unseen n-grams. If the stored fingerprint located by
the MPH function matches the fingerprint of this unseen n-
grams, then the model will return the value associated with a
seen n-gram (which is most likely incorrect). Assuming that

fingerprint
size (bits)

no. of FPs Actual FP
Rate

Expected
FP Rate

8 5132312 3.906e-2 3.906e-2
12 320574 2.440e-4 2.441e-4
16 19804 1.507e-05 1.525e-5

Table 4: False positives using the MPHR approach.
We queried the 1+2+3-gram model with 1.3 billion
unseen 4-gram keys.

the fingerprint is generated by a random hash function, and
that the returned integer of an unseen key from the MPH
function is also random, expected false positive rate for the
model is the same as the probability of two keys randomly
hashing to the same value: 2−m.

Where m is the number of bits of the fingerprint. To test
actual false positive rates we built a MPHR structure hold
frequency counts for all 1 to 3 grams, and queried the model
for all 4-grams from the Web1T corpus. These 4-grams are
all unseen for this model, so when the array in Stage 2 is
accessed, if the fingerprint of the query matches the stored

27

fingerprint then a false positive has occurred. Table 4 shows
that these false positive results are very close to the expected
value.

7. COMPARISON OF APPROACHES
We next consider some comparisons of our new methods
to the alternative available approaches. Table 5 shows the
cost of storing 8-bit quantized language models for different
approaches, in bytes per n-gram, including trie-based LM
toolkits (where figures are available). The figures for ran-
domized methods assume error rates in line with 12-bit fin-
gerprinting, and are calculated for the Google Web 1T data
(when distributional characteristics affect costs). The cost
for Bloom maps is calculated as log e(log 1

ε
+ H(~v)) where

H0(~v) represents the zeroth order entropy of the distribu-
tion of values over keys. This entropy for the Web 1T data,
when there is 8-bit uniform quantization of counts, is 1.8367
(or 8.3896 for the same data without quantization). Clearly
the cost for trie-based methods is much greater than for the
randomized methods.

We take a closer look at the latter case in Figure 4, to see
how the cost varies across different error rates. The values
plotted for the optimal counting Bloom filter are generously
small, in that we do not take multiple storage of keys into
account — we have instead simply looked up the minimum
number of bits per item at which a given error rate can be
achieved (by using enough hash functions). We see that the
basic MPHR method has lower cost than the Bloomier filter
approach, but greater cost than the Bloom filter methods,
although the difference narrows with lower error rates. The
Tiered MPHR method, however, achieves a significant cost
saving over basic MPHR, such as to achieve lower cost than
the Bloom filter methods for anything other the lowest error
rates.

In Figure 3, we plot similar results for storing the full count
information of the Google Web 1T data, including a line for
the Bloom map. The relative space usage of methods here
is closely in line with that observed with quantization. Al-
though we plotted Bloom filter based approaches for com-
parison, neither the Bloom filter approach nor the Bloom
Map approach plausibly extends to storing full counts be-
cause of the time that would be required to perform a query.
To perform a single query, both structures in the worst case
need O(|~v| · k) computations where |~v| is the number of
unique values stored and k is the number of hash functions
as opposed to the constant time required by the MPHR,
Bloomier, and Tiered MPHR structures. In addition to the
infeasible time required for queries the false positive rates
of these approaches also depends upon the number of hash
functions computed and grows prohibitively large when stor-
ing full counts.

We tested the speed-of-access performance of the basic MPHR
approach by building a model for the 1.3 billion n-grams of
length 1–3 in the Web 1T data, and then querying it for all of
its n-grams. This testing retrieved values at a rate of 564K
queries per second — a rate of access that is around 1000
times faster than an alternative system storing the same
data in a MySQL database.

To close this section, we note some further differences amongst

Method Space
bytes/n-gram

CMU 32b, 8-bit Quantized 7.2
CMU 24b, 8-bit Quantized 6.2
IRSTLM, 8-bit Quantized 9.1

RPH 12bit fp, 8bit Quantized 3.08
BloomMap ε = 212, 8bit Quantized 2.5

MPHR 12bit fp, 8bit Quantized 2.76
Tiered MPHR 12bit fp, 8bit Quantized 1.91

Table 5: Comparison between LM storage models
to store 8 bit quantized values

the randomized approaches. Although all these methods
suffer a problem of false positives, the Bloom filter meth-
ods also allow misalignments, where an incorrect value is
returned for a seen n-gram. This does not arise for either
RPH or MPHR methods. The RPH and MPHR methods
have in common that the full set of keys must be available
when the LM representation is constructed, but it is a char-
acteristic of RPH that no values can be changed without
invalidating the model. This is not true for MPHR, making
it promising for use in adaptive LM contexts.

10
20

30
40

False Positive Rate

B
its

 p
er

 n
gr

am

2!4 2!8 2!12 2!16 2!20

MPHR
RPH
Optimal Counting Bloom Filter (T&O)
Simple Bloom Map
Tiered MPHR

Figure 3: Comparison of space usage storing 8-bit
quantized values

8. CONCLUSION
We have presented a two efficient methods of storing large
language models, consisting of billions of n-grams, that al-
lows for probability values or frequency counts to be accessed
quickly and that store n-grams and full count information
using less space than all know approaches. We show that
using our Tiered MPHR structure we store all n-grams and
values in the Google Web 1T dataset using 2.5 bytes per n-
gram or 1.41 bytes per n-gram using quantized values. We
have also shown that in addition to the efficient space usage

28

10
20

30
40

50

False Positive Rate

B
its

 p
er

 n
gr

am

2!4 2!8 2!12 2!16 2!20

MPHR
RPH w/ ranks array
Simple Bloom Map
Tiered MPHR

Figure 4: Comparison of space usage storing full
counts

of our models, they have other advantages including O(1)
query time, no possibility of missassignments, and ability
to store full count information without increasing the query
time.

9. REFERENCES
[1] D. Belazzougui, F. Botelho, and M. Dietzfelbinger.

Hash, displace, and compress. Algorithms - ESA 2009,
pages 682–693, 2009.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[3] F. C. Botelho, R. Pagh, and N. Ziviani. Simple and
space-efficient minimal perfect hash functions. In
Proceedings of 10th Workshop on Algorithms and Data
Structures, volume 4619, pages 139–150. 2007.

[4] T. Brants and A. Franz. Google Web 1T 5-gram
Corpus, version 1. Linguistic Data Consortium,
Philadelphia, Catalog Number LDC2006T13,
September 2006.

[5] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In SODA ’04, pages 30–39,
Philadelphia, PA, USA, 2004.

[6] P. Clarkson and R. Rosenfeld. Statistical language
modeling using the CMU-cambridge toolkit. In
Proceedings of ESCA Eurospeech 1997, pages
2707–2710, 1997.

[7] M. Federico and M. Cettolo. Efficient handling of
n-gram language models for statistical machine
translation. In StatMT ’07: Proceedings of the Second
Workshop on Statistical Machine Translation, pages
88–95, Morristown, NJ, USA, 2007. Association for
Computational Linguistics.

[8] E. Fredkin. Trie memory. Commun. ACM,
3(9):490–499, 1960.

[9] K. Fredriksson and F. Nikitin. Simple compression
code supporting random access and fast string
matching. In Proc. of the 6th International Workshop
on Efficient and Experimental Algorithms (WEA’07),
pages 203–216, 2007.

[10] J. Goodman and J. Gao. Language model size
reduction by pruning and clustering. In Proceedings of
ICSLP’00, pages 110–113, 2000.

[11] D. Graff. English Gigaword. Linguistic Data
Consortium, catalog number LDC2003T05, 2003.

[12] B. Harb, C. Chelba, J. Dean, and S. Ghemawat.
Back-off language model compression. In Proceedings
of Interspeech, pages 352–355, 2009.

[13] B.-J. Hsu and J. Glass. Iterative language model
estimation:efficient data structure & algorithms. In
Proceedings of Interspeech, pages 504–511, 2008.

[14] F. Jelinek, B. Merialdo, S. Roukos, and M. S. I.
Self-organized language modeling for speech
recognition. In Readings in Speech Recognition, pages
450–506. Morgan Kaufmann, 1990.

[15] A. Stolcke. Entropy-based pruning of backoff language
models. In Proceedings of DARPA Broadcast News
Transcription and Understanding Workshop, pages
270–274, 1998.

[16] A. Stolcke. SRILM - an extensible language modeling
toolkit. In Proceedings of the International Conference
on Spoken Language Processing, volume 2, pages
901–904, Denver, 2002.

[17] D. Talbot and T. Brants. Randomized language
models via perfect hash functions. Proceedings of
ACL-08 HLT, pages 505–513, 2008.

[18] D. Talbot and M. Osborne. Randomised language
modelling for statistical machine translation. In
Proceedings of ACL 07, pages 512–519, Prague, Czech
Republic, June 2007.

[19] D. Talbot and M. Osborne. Smoothed bloom filter
language models: Tera-scale LMs on the cheap. In
Proceedings of EMNLP, pages 468–476, 2007.

[20] D. Talbot and J. M. Talbot. Bloom maps. In 4th
Workshop on Analytic Algorithmics and
Combinatorics 2008 (ANALCO’08), pages 203—212,
San Francisco, California, 2008.

[21] E. Whittaker and B. Raj. Quantization-based
language model compression. Technical report,
Mitsubishi Electric Research Laboratories,
TR-2001-41, 2001.

29

